Show simple item record

dc.contributor.authorDaniel Gouveia, Carolina
dc.contributor.authorRodrigues Torres, Roger
dc.contributor.authorMarengo, José Antônio
dc.contributor.authorAvila-Diaz, Alvaro
dc.coverage.spatialAmérica del Sur
dc.date.accessioned2023-01-24T20:32:57Z
dc.date.available2023-01-24T20:32:57Z
dc.date.issued2022
dc.identifier.citationGouveia, C. D., Rodrigues Torres, R., Marengo, J. A., & Avila-Diaz, A. (2022). Uncertainties in projections of climate extremes indices in south america via bayesian inference. International Journal of Climatology, 42(14), 7362-7382. doi:10.1002/joc.7650spa
dc.identifier.urihttps://repository.udca.edu.co/handle/11158/5027
dc.description.abstractHistorical simulations and projections of climate extremes indices of precipitation and temperature were analysed over South America until the end of the 21st century through 31 general circulation models (GCMs) under four Representative Concentration Pathways. Simulations were compared with reanalysis data, and a Bayesian inference method was used to assess the uncertainties involved in the multi-model climate projections. Regarding the precipitation extremes indices, the GCMs' simulations reasonably approached the reanalysis data, but with heterogeneous biases, both in sign and in the location of the highest values. The temperature extremes indices presented the smallest biases when compared to precipitation. Projections show a gradual growth of precipitation extremes events as the analysed radiative forcing scenario increases, both in magnitude and extent, over a large part of South America. Projections also indicate a decrease in cold days and nights and an increase in warm days and nights, more pronounced in the equatorial region. Bayesian inference method smoothed changes in precipitation extremes events, both in magnitude and extent, compared to the simple GCMs' ensemble mean. There was no considerable variation in the temperature indices when applying the Bayesian inference. Finally, the probability density functions resulted in a predominance of multimodal and wide curves for the precipitation indices, showing great uncertainties in the GCMs' results, differently from those for the temperature indices, where the GCMs presented good agreement represented through unimodal and narrow curves.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.esspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://udca.elogim.com:2276/doi/10.1002/joc.7650spa
dc.titleUncertainties in projections of climate extremes indices in South America via Bayesian inferenceeng
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.lembAnálisis bayesiano
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.description.notesIncluye referencias bibliográficasspa
dc.identifier.doihttps://doi.org/10.1002/joc.7650
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.subject.agrovocRadiación terrestre
dc.subject.agrovocClima
dc.subject.agrovocPronóstico del tiempo
dc.subject.agrovocTemperatura del aire
dc.relation.citationedition(Nov., 2022)spa
dc.relation.citationendpage7382spa
dc.relation.citationissue14spa
dc.relation.citationstartpage7362spa
dc.relation.citationvolume42spa
dc.relation.ispartofjournalInternational Journal of Climatologyspa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.es
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.es