...
...
...
...
PreviousNext
    • español
    • English

  • English 
    • español
    • English
  • Login
UMECIT
SISTEMA DE INFORMACIÓN, DOCUMENTACIÓN Y RECURSOS EDUCATIVOS – SIDRE
Repositorio Institucional

En nuestro repositorio institucional están depositados materiales en formato digital fruto de la producción científica o académica de la Universidad, de esta manera permite almacenar, difundir y preservar información de vital importancia.

Menu +
    • Mi cuenta
    • Acceder a mi cuenta
    • Regístrese
    • Consulte por
    • Año
    • Materia
    • Autor
    • Tipo de documento
    • Servicios
    • Acerca de
    • Normatividad
    • Novedades
    • Políticas del repositorio
    • Requisitos Entrega Trabajo de grado
    • Video de autoarchivo
    • Contacto
    • marcasas@udca.edu.co - repositorio@udca.edu.co
    • Otros
    • Autoarchivo
    • Biblioteca
    • Descubridor
    • OJS
  • Estadísticas
  • Colecciones Comunities
  • Autor Authors
  • Título Titles
  • Fecha Dates
  • Materias Subjects
View Item 
  •   DSpace Home
  • C. Publicaciones institucionales
  • CC. Producción Científica
  • CCB. Artículos indexados en Scopus
  • View Item
  •   DSpace Home
  • C. Publicaciones institucionales
  • CC. Producción Científica
  • CCB. Artículos indexados en Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cambiar vista

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResource TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsResource Type

My Account

LoginRegister

Statistics

View Usage Statistics

Machine learning models to select potential inhibitors of acetylcholinesterase activity from SistematX: a natural products database


Herrera-Acevedo, C.
Perdomo Madrigal, Camilo cc
Herrera-Acevedo, Kenyi
Coy-Barrera, Ericsson David

Artículo de revista

2021

Productos BiológicosBuscar en Repositorio UMECIT
AcetilcolinesterasaBuscar en Repositorio UMECIT
Aprendizaje AutomáticoBuscar en Repositorio UMECIT
Cribado virtualBuscar en Repositorio UMECIT

Alzheimer's disease is the most common form of dementia, representing 60-70% of dementia cases. The enzyme acetylcholinesterase (AChE) cleaves the ester bonds in acetylcholine and plays an important role in the termination of acetylcholine activity at cholinergic synapses in various regions of the nervous system. The inhibition of acetylcholinesterase is frequently used to treat Alzheimer's disease. In this study, a merged BindingDB and ChEMBL dataset containing molecules with reported half-maximal inhibitory concentration (IC50) values for AChE (7032 molecules) was used to build machine learning classification models for selecting potential AChE inhibitors from the SistematX dataset (8593 secondary metabolites). A total of seven fivefold models with accuracy above 80% after cross-validation were obtained using three types of molecular descriptors (VolSurf, DRAGON 5.0, and bit-based fingerprints). A total of 521 secondary metabolites (6.1%) were classified as active in this stage. Subsequently, virtual screening was performed, and 25 secondary metabolites were identified as potential inhibitors of AChE. Separately, the crystal structure of AChE in complex with (-)-galantamine was used to perform molecular docking calculations with the entire SistematX dataset. Consensus analysis of both methodologies was performed. Only eight structures achieved combined probability values above 0.5. Finally, two sesquiterpene lactones, structures 15 and 24, were predicted to be able to cross the blood-brain barrier, which was confirmed in the VolSurf+ quantitative model, revealing these two structures as the most promising secondary metabolites for AChE inhibition among the 8593 molecules tested. A consensus analysis of classification models and molecular docking calculations identified four potential inhibitors of acetylcholinesterase from the SistematX dataset (8593 structures)

https://repository.udca.edu.co/handle/11158/4277

https://pubmed.ncbi.nlm.nih.gov/34132933/

  • CCB. Artículos indexados en Scopus [436]

Descripción: MachineLearningModelsToSelectP.pdf
Título: MachineLearningModelsToSelectP.pdf
Tamaño: 2.259Mb

Unicordoba LogoPDFOpen AccessFLIPLEER EN FLIP

Show full item record

Cita

Cómo citar

Cómo citar

Miniatura

Thumbnail

Gestores Bibliograficos

Exportar a Bibtex

Exportar a RIS

Exportar a Excel

Buscar en google Schoolar

Buscar en microsoft academic

untranslated

Código QR

Envíos recientes

    No hay artículos recientes
Image
Image
Image
Image
Image
Image
Image
Image
Image
Image
Image
‹›

CAMPUS UNIVERSITARIO

Calle 222
  • Calle 222 # 55 - 37
  • PBX (57 1) 6684700
  • Bogotá, Colombia
Avenida Boyacá
  • Avenida Boyacá # 66A - 61
  • PBX (57 1) 6684700 Ext. 501
  • Bogotá, Colombia
Cartagena
  • Calle 31 # 18b - 17
  • (Avenida Pie del Cerro)
  • Telefóno: (57 5) 6568562
  • Cartagena, Colombia

Universidad de Ciencias Aplicadas y Ambientales U.D.C.A © 2019 - 2021

NIT 860.403.721-2

Resolución del Ministerio de Educación Nacional 7392 del 20 de mayo de 1983 - Código SNIES 1835 Acreditación Institucional de Alta Calidad: Resolución 017390 del 27 de diciembre de 2019 (4 años), otorgada por el Ministerio de Educación Nacional Institución de Educación Superior sujeta a la inspección y vigilancia del Ministerio de Educación Nacional

Sistema DSPACE - Metabiblioteca | Metabiblioteca