METODO ESPECTROFOTOMETRICO PARA EL ESTUDIO DEL FACTOR DE PROTECCION SOLAR (SPF) CON EL USO DE ARDUINO LEONARDO Y SOFTWARE LIBRE.

Omar francisco López Aldana

Corporación Tecnológica de Bogotá

Tecnología en Química Industrial

Bogotá, Colombia

2018
METODO DE ANALISIS ESPECTROFOTOMETRICO PARA EL ANALISIS DE
PROTECCION SOLAR CON EL USO DE ARDUINO LEONARDO Y SOFTWARE
LIBRE.

Omar francisco López Aldana
01112094

Opción de grado, modalidad Investigación
Requisito para optar por el título de Tecnólogo en Química Industrial

Director
Alejandro Amadeus Castro Vega
Ing. Quim., Dr. C. Q.

Corporación Tecnológica de Bogotá
Tecnología en Química Industrial
Bogotá, Colombia
2018
A todas y cada una de las personas que intervinieron en este proyecto, cada uno aportó recursos, fortaleza e intelecto para que lograra salir adelante.
Agradecimientos.

A Dios y mis padres por todo el apoyo recibido.
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESUMEN</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>PLANTEAMIENTO DEL PROBLEMA</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>JUSTIFICACIÓN</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>OBJETIVOS</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5.1 Objetivo general</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5.2 Objetivos específicos</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5.3 ANTECEDENTES</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>MARCO REFERENCIAL</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>6.1 Principios</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>6.2 De las motivaciones</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>6.3 Productos protectores solares, bronceadores, anti quemaduras solares</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>6.4 Bronceado</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>6.5 Efectos benéficos de la radiación solar</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>6.6 Efectos adversos de la radiación solar</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>6.6.1 La exposición a la ración solar Tiene efectos adversos a corto y largo plazo</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>6.7 Exposición crónica</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>6.8 Radiación solar y sus efectos sobre la piel</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>6.9 Concepto de E-viton y mínima dosis eritemógena</td>
<td>23</td>
</tr>
</tbody>
</table>
6.10 FORMULACIONES CON FILTROS SOLARES Y BRONCEADORES 29

6.10.1 Introducción .. 29

6.10.2 Clasificación filtros solares según su aplicación ... 29

6.10.3 Sustancias filtros solares poliméricas .. 37

6.11 Tipos de piel y recomendaciones para la selección de filtros solares: El factor protector del sol ... 38

6.12 Arduino .. 42

6.13 Arquitectura Arduino .. 43

6.14 ¿Qué quiere decir que Arduino sea software libre? ... 44

6.15 De Arduino Leonardo .. 45

6.16 Octilmetoxinamato ... 45

7 METODOLOGIA .. 45

7.1 Parte electrónica .. 46

7.2 De la programación ... 49

7.3 De la parte química ... 50

8 RESULTADOS Y CONCLUSIONES .. 50

8.1 Resultados .. 50

8.2 Curva de calibración factor SPF ... 57

9 CONCLUSIONES ... 58

9.1 De la radiación uv-vis .. 58
9.2 Del hardware Arduino Leonardo... 59
9.3 De la curva de calibración. ... 60
9.4 De la curva y el método.. 61
9.5 El orden de la reacción .. 61
9.6 Compuestos activos ... 61
10 Trabajos citados.. 62

Lista de figuras.

Figura 1 Energía ultravioleta medida como eritema o antirraquítica incidente en un plano horizontal durante tres días claros de abril, junio y septiembre.. 24

Figura 2 Energía ultravioleta medida como eritema o antirraquítica incidente en un plano horizontal (Cortesía de American Perfumer.)... 24

Figura 3 Espectro de transmisión de capas de 0,5 cm de concentraciones diferentes de pdimetilaminobenzoato de etilo (en alcohol).. 35

Figura 4 Condensandos de un benzaldehído con una cetó o tioceto hidracina............ 36

Figura 5 toma de datos en tiempo real con EXEL .. 49

Figura 6 octilmetoxinamto .. 50

Figura 7 pareja gráficos octilmetoxinamato en concentraciones y su linealización. 51
Figura 8 pareja gráficos octilmetoxinamato en concentraciones y su linealización. 51
Figura 9 Pareja gráficos octilmetoxinamato en concentraciones y su linealización. 51
Figura 10 pareja gráficos octilmetoxinamato en concentraciones y su linealización. 52
Figura 11 pareja gráficos octilmetoxinamato en concentraciones y su linealización. 52
Figura 12 pareja gráficos octilmetoxinamato en concentraciones y su linealización. 52
Figura 13 pareja gráficos octilmetoxinamato en concentraciones y su linealización. 53
Figura 14 pareja gráficos octilmetoxinamato en concentraciones y su linealización. 53
Figura 15 pareja gráficos octilmetoxinamato en concentraciones y su linealización. 54
Figura 16 pareja gráficos octilmetoxinamato en concentraciones y su linealización. 54
Figura 17 grafico bloqueador solar tanga abs en función del tiempo. 55
Figura 18 grafico bloqueador solar tanga ln abs en función del tiempo. 55
Figura 19 grafico bloqueador solar sunway abs en función del tiempo............................. 56
Figura 20 grafico bloqueador solar sunway abs en función del tiempo............................. 56
Figura 21 curva de calibración y ecuación de trabajo.. 57

Lista de tablas.

Tabla 1 Cuantificación energética de radiación productora de quemadura solar 26
Tabla 2 Tiempos de exposición para varios grados de quemaduras solares Mecanismo protector de la piel .. 27
Tabla 3 Cuantificación energética de radiación productora de quemadura solar 40
Tabla 4 Cuantificación energética de radiación productora de quemadura solar 40
Tabla 5 Procedimiento esquematizado de la fabricación del fotmetro uv 47
Tabla 6 curva de calibración SPF .. 57
1 RESUMEN

La finalidad de los preparados como son bronceadores y filtros solares, es prevenir o reducir la acción perjudicial de la radiación solar colaborando con un bronceamiento de la piel sin tener un efecto doloroso.

Nosotros con el director de tesis Amadeus castro Vargas, desarrollamos aquí una posible técnica de espectrofotometría para la verificación de la efectividad de la dispersión de radiación uv y visible que afecta la piel, con el uso del sistema de software libre Arduino, y un artilugio diseñado para remplazar la piel del ser humano por una técnica fotométrica, evitando el uso de cobayas humanas.

2 INTRODUCCIÓN

La radiación solar tiene efectos tanto beneficiosos como también perjudiciales para la piel y el cuerpo humano dependiendo de la exposición y la frecuencia a la radiación solar\(^1\), la intensidad y la sensibilidad del individuo a la exposición.

Siendo el efecto más manifiesto el eritema de piel, seguido por la formación de un bronceado, donde el desarrollo de este es un mecanismo de defensa contra la radiación nociva que afecta la piel.

3 PLANTEAMIENTO DEL PROBLEMA
Los fabricantes de cosméticos, productos de tocador y similares tienen una obligación moral y económica que es acompañada de uno requerimientos legales de no comercializar sustancias que son perjudiciales para el consumidor, y los preparados que se comercializan pueden presentar reacciones alérgicas o más graves a la piel de las personas, es por esto que se hace necesario un control de calidad así como la prueba y ensayos permanentes de los productos.

El ensayo que con más frecuencia se utiliza es el de DRAIZE, la mayoría de ensayos predictivos se realizan en animales pero una gran cantidad se realizan en el hombre estos son MARZULLI y MAIBAGH3, DRILL y LAZAR4 y The National Academy of Sciences5

En el ensayo de DRAIZE se rasuran conejos albinos, y en esta área aplican los preparados para luego de 24 horas analizar los efectos presentados en la piel, sin embargo la piel del conejo es muy sensible y sucede que existe el fenómeno de sustancias que son inocuas para el ser humano son nocivas para la piel del conejo y se rechazan, es por esto que se utiliza piel de voluntarios para el análisis dermatológico.

La empresa Belcorp de Bogotá realiza estos ensayos pero tiene el inconveniente de que los individuos humanos al presentar quemadura o irritaciones por la acción de la radiación solar o alergia de piel, generan sobrecostos y problemas legales, que la empresa quiere disminuir y con el tiempo eliminar.

Por esto presenta como desafío el desarrollo de un equipo y una técnica que remplace la metodología del uso de seres vivos y sobre todo de personas con una técnica sencilla fiable rápida y económica, que dé resultados en el campo espectrofotométrico.
Se propone la construcción de un espectrofotómetro de absorción en el uv, con la utilización de una placa Arduino Leonardo, y una celda, junto con los sensores y lámparas en fase prototipo.

Al medir el factor solar se debe medir la velocidad de degradación del compuesto activo en condiciones similares de exposición, por lo tanto con este equipo podemos medir en tiempo real la velocidad de degradación de los ingredientes activos presentes que son los que interactúan primero con la radiación solar de longitudes de onda dañinas para el organismo, se puede anteponer un factor de calibración y con este comparar los lotes producidos ya que de esta manera sabemos en realidad cuanto protege.

Para evitar la utilización de prácticas con personas se debe utilizar un factor de comparación, donde pierde eficacia el producto, presentándose los efectos sobre la piel.

La propuesta que estamos realizando con este equipo es la determinación en tiempo real de los datos de estudio, y bajo estos parámetros determinamos los efectos producidos sobre la piel en condiciones controladas, sin la utilización del personal para pruebas directas.

El equipo es diseñado para uso exclusivo de espectroscopia en el UV, para la determinación de la protección solar,
4 JUSTIFICACIÓN

El remplazo de personal humano para pruebas es la principal justificación de este desarrollo, ya que existen antecedentes de espectrofotometría en la determinación del factor solar pero no existe un método instrumental que remplace totalmente la utilización de agentes humanos, este método es un desarrollo total y completo de un sistema instrumental electrónico y químico para remplazar un sistema biológico con la utilización de software libre.

5 OBJETIVOS

5.1 Objetivo general

- Desarrollar método espectrofotométrico para el análisis de factor de protección solar (SPF) con métodos spectrofotométricos para el estudio de factor de protección solar (SPF) con el uso de Arduino Leonardo y software libre.

5.2 Objetivos específicos

Construir e interpolar un factor de luz uv a una celda espectrofotométrica censada por un circuito Arduino.

Desarrollar una curva de calibración para el factor (SPF).

Evaluar la degradación del factor de protección solar (SPF) contra la exposición uv en función del tiempo.
5.3 ANTECEDENTES

LUCKIESH y TAYLOR⁶ realizaron una investigación clásica en este campo y establecieron las curvas del espectro de producción de bronceado y eritema. Utilizando una gama de filtros para aislar bandas estrechas de longitudes de ondas desde la radiación generada por una lámpara eléctrica de arco, bajo un filtro de agua para absorber calor, encontraron que la acción sobre las áreas expuestas dependía de la longitud de onda de la energía a la cual se había expuesto. Se evaluaron el eritema y el bronceado inmediatamente después de la exposición, al día siguiente y a intervalos semanales posteriores. Examinaron la piel bajo radiación UV y concluyeron que el eritema y el bronceado se pueden producir simultáneamente, pero un intenso eritema puede ocultar el bronceado¹.

No obstante, STAMBOVSKY⁷, cuando expone las causas técnicas del fracaso comercial de preparaciones bronceadoras en el mercado de EE. UU., advierte el riesgo de confiar demasiado en el dato espectro métrico de agentes filtros solares en la selección, y sugiere que su valor se limite al examen inicial cualitativo.

KUMLER y DANIELS⁸ construyeron una curva de quemadura solar para la cual las ordenadas eran los productos de las ordenadas de la curva de radiación solar y una curva eritemógena derivada del dato experimental. Esta curva varía desde 296 a 326 nm con un máximo en 308 nm. Según sus .s de vista, un compuesto tenía que cumplir dos condiciones para ser considerado como filtro solar efectivo.
En primer lugar, tenía que superponerse sobre la curva quemadura solar completa.

En segundo lugar, tenía que poseer propiedades de elevada absorción a 308 nm.

Esta última clasificación fue más tarde propuesta por KULMER\(^9\) como la base de un método sencillo y rápido para la evaluación relativa de filtros solares. Midió la densidad óptica de soluciones al 0,1 % en una célula de sílice de 0,1 a 308 nm y transformó los resultados en un índice de filtro solar (SI, sunscreen index) que se corresponde con la DO de una solución al 1 % en una célula de 1 mm.

Clasifica cuarenta y cinco compuestos en orden decreciente de eficacia filtrante solar, encabezados por \(p\)-dimetilaminobenzoato de etilo. Si se conocen las características de absorción de la sustancia seleccionada, se puede calcular la concentración requerida en un producto para producir los efectos deseados, teniendo en cuenta el posible espesor de la película a ser aplicada\(^1\).
6 MARCO REFERENCIAL

6.1 Principios.

La energía para activar las sustancias sensibles a la luz procede de radiaciones de longitudes de onda entre 300 y 800 nm de luz UV y visible que son absorbidas por el sistema y es el rango típico de la luz visible.

El equipo prototipo se basa en un fotómetro normal en donde existe fuente de luz, la rejilla de difracción, se cambia por una fuente de luz única en el uv y se obtiene los datos en tiempo real, buscando simpleza, y economía esta versatilidad solo la entrega la placa Arduino Leonardo, que con solo unos simples ,ndos en c++ se convierte en un fotómetro de gran calidad y para nuestro desarrollo es ideal, las bases se encuentran en el libro Arduino curso práctico de formación, para desarrollar el programa básico de lectura se modificó el código de ejemplo que se encuentra en el citado texto 10 el código se modifica para que lea datos por segundo de la radiación incidente y con la ecuación de Lambert beer recibirlos en la hoja de cálculo que se pasan de simples datos electrónicos en unidades de baudios, a datos de transmitancia, absorbancia, esto entrega un valor agregado ya que si se utiliza open office se pueden trabajar las gráficas en tiempo real observando gráficamente el cambio en el sistema, a grosos modo el sistema se compone de básicamente una placa Arduino con su respectivo código c++, una celda, y de fotómetro una lámpara con una longitud de onda fija, que esta como se dijo anteriormente esta entre 300 y 800 nm, y un software para hoja de cálculo de apache open office, el cual presenta ventajas frente a office de Windows ya que no nos genera gastos de uso, y toma datos en tiempo real, y establece
el aumento en la transmitancia o el cambio en la absorbancia en función del tiempo, siendo esta la gráfica central que se busca, que aporta la información del tiempo y foto actividad de los compuestos a analizar.

Se fabrica un espectrofotómetro a nivel laboratorio donde se elimina el monocromador y se remplaza por una fuente de luz fija, cuya longitud de onda esta tabulada y referenciada bibliografía, un recipiente negro y un fotodetector, hecho por una fotorresistencia, la cual es la que conecta a la placa Arduino Leonardo.

El corazón del equipo es la placa Arduino Leonardo la cual toma el cambio de la intensidad radiante que es un valor lógico en un valor digital según el código de programación el cual es el siguiente:

```c
int pinsensor = 0; //Entrada analógica donde está conectado el sensor
int lmedia;
int cnt;
int interruptor = 7;
int contador = 0;
int lectura;
void setup() {
    pinMode(interruptor, INPUT_PULLUP);
```
Serial.begin(9600);

Keyboard.begin();

}

void loop()
{

while(!digitalRead(interruptor))
{

lmedia=0;

for (cnt =0; cnt<20; cnt++)
{

lectura = analogRead(pinsensor);

lmedia = lmedia+lectura;

}

lmedia=lmedia/cnt;

contador++;

Keyboard.print(contador);
Keyboard.press(KEY_TAB);

delay(150);

Keyboard.release(KEY_TAB);

Keyboard.print(lectura);

delay(100);

Keyboard.press(KEY_RETURN); // pulsa enter

delay(150); // espera 150ms

Keyboard.release(KEY_RETURN);// libera enter

Serial.println(lectura); //0=muy oscuro; 1023=muy iluminado

delay(1000);

}}

Código de programación en c++ para Arduino Leonardo en el cual se especifican los comandos necesarios para transformar el microprocesador en un lector de radiación UV

Este código c++ secuestra el teclado del computador (crackea) y escribe los datos en una hoja de cálculo, cualquier modificación por insignificante que sea es registrada en el Arduino Leonardo, o en la celda y es digitalizada, numerada, tabulada, transformada matemáticamente por open office y graficada en tiempo real.
Se observa con gran curiosidad que el sensor que es una simple fotorresistencia increíblemente sencilla y precisa, el truco es adquirir fotorresistencia pequeñas ya que las grandes no son sensibles, la longitud de onda ya se encuentra tabula en los trabajos realizados por LUCKIESH y TAYLOR esto conlleva a encontrar en el mercado infinidad de leds que cumplen las condiciones específicas de longitud de onda, o encontrar lámpara de luz uv de longitud específica, a lo cual solo hay que cambiar el detector por un detector especial que lo venden dentro de un kit para Arduino pero al ver la tabla s tabuladas por LUCKIESH y TAYLOR se encuentra que no es necesario ya que el rango de foto interacción está en el rango visible. Todo esto debido a que la foto resistencia solo trabaja en el visible.

6.2 De las motivaciones.

La exposición a la radiación solar puede tener efectos beneficiosos y perjudiciales sobre el cuerpo humano, dependiendo de la duración y frecuencia la exposición, la intensidad la luz solar y la sensibilidad del individuo considerado.

Harris (1982) da un detallado enfoque “Las empresas del sector cosmético mueven ingentes cantidades de dinero al año en su estructura fundamental que es el mercado de la belleza, nuestro país Colombia una de las empresas líderes es Belcorp empresa del sector cosmético, esta empresa envía a la universidad CTB el 24 de agosto del año 2016 a la 1:30 de la tarde por medio del docente Amadeus Castro Vargas la convocatoria para adquirir una tecnología o apoyar una iniciativa que desarrolla un método de análisis físico químico, instrumental o electrónico, capaz de medir el factor de protección solar(SPF)”.
La metodología debe de ser realizada en un tiempo inferior a 3 horas y reemplaza la técnica convencional que demora entre 15 y 21 días, lo cual incide en la rotación de lotes de estos tipos de productos.

Se realiza un prototipo electrónico -químico para la industria Belcorp que anhela no quemar más gente para probar la calidad de sus bloqueadores solares.

Para esta finalidad nos basamos en un desarrollo anterior de Arduino, en este caso se transformó un diseño fotométrico propio, desarrollado para medir el color de la cerveza y el color caramelo, en un sistema UV, modificado según el libro curso práctico de formación para Arduino.

6.3 Productos protectores solares, bronceadores, anti quemaduras solares

Como la exposición prolongada de la piel a la radiación UV provoca la inflamación y el foto envejecimiento de la piel el efecto adverso sobre el sistema inmune y cáncer de piel muchas moléculas orgánicas como ejemplo salicilato cinamatos, benzofenonas, antranilatos, dibenzoilmetano, y para aminobenzoato, se han utilizado para protección UV, se requiere una alta foto estabilidad a lo largo de la exposición a la luz solar para que el efecto de filtrado UV sea sostenible.

Desafortunadamente, la absorción de rayos UV puede provocar reacciones fotoquímicas significativas, entre las que se encuentra la foto isomerización y la foto dimerización de los propios filtros orgánicos la mayoría de los cuales están compuestos por anillos aromáticos con un
grupox carbonilo, dicha foto degradación reduce el rendimiento del filtrado UV y forma sub productos tóxicos de degradación, eso también conlleva a que se desea la mínima degradación de las moléculas orgánicas del filtro UV en la parte más profunda de la piel para evitar una pérdida la función principal cuando penetran el estrato córneo. Todas estas propiedades se miden sobre la piel de individuos de prueba lo cual conlleva al daño de la piel de personas.

6.4 Bronceado.

La capacidad para que la piel de un individuo genere un bronceado está programada genéticamente y es dependiente de la posibilidad de producir pigmentos en los melanocitos, las respuestas al bronceado se estimulan debido a que las longitudes de onda eritemogenicas que se encuentran en los intervalos de la radiación UV y visible, esto genera en cada individuo tres tipos de reacciones o respuestas al bronceado.

Tenemos bronceado inmediato, bronceado retardado, y bronceador real conocido como metalogénesis.

El bronceado inmediato se presenta de 300 nm a 600 nm, teniendo un pico situado entre 340 y 360 nm esto implica gránulos de melanina no oxidados presentes en la capa dérmica de la piel, próximos a la superficie. Alcanzando un máximo alrededor de la hora después de la exposición a la luz UV solar y comienza a perder este color al cabo de dos a tres horas después de esta exposición.

La radiación eritemogénica estimula el bronceado retardado el cual está comprendido entre 295 y 320 nm.
Y por último tenemos que el bronceado real comienza aproximadamente 2 días después de esta exposición y alcanza un máximo hacia las dos o tres semanas posteriores.

6.5 Efectos benéficos de la radiación solar.

La exposición moderada de cualquier individuo mamífero al sol produce, unos estados de salud y una sensación psicológica y fisiológica, de bienestar general y mucho sosiego.

También encontrándose unos ciertos beneficios secundarios para la salud del individuo Cómo es la estimulación de la circulación sanguínea, aumentando la formación de hemoglobina y promoviendo una reducción de la presión sanguínea.

encontrándose que es la forma de la prevención y tratamiento del raquitismo el cual es por un mecanismo que se realiza a través de la activación del 7 - dehidrocolesterol (provitamina D3) la cual está presente en la epidermis como vitamina D la cual incrementa la absorción del calcio en el intestino.

Los procedimientos de la exposición del cuerpo humano a la radiación solar se han utilizado en el tratamiento de ciertos tipos de tuberculosis, como la tuberculosis de glándulas y de huesos, y en el tratamiento de ciertas enfermedades cutáneas, como la psoriasis, también se cree que ejerce una influencia muy beneficiosa sobre el sistema nervioso autónomo disminuyendo la sensibilidad del individuo a determinadas infecciones.
En consecuencia al producir la melanina genera un engrosamiento de la piel, desempeñando un papel esencial en la formación de los mecanismos de protección natural del cuerpo a las quemaduras solares.

6.6 **Efectos adversos de la radiación solar.**

6.6.1 **La exposición a la ración solar Tiene efectos adversos a corto y largo plazo.**

6.6.1.1 **Quemaduras solares.**

Cómo efecto a corto plazo de las exposiciones de la piel a la radiación solar se encuentra las quemaduras solares la cual es una lesión temporal de la epidermis, manifestándose por sí misma en los síntomas conocidos de las quemaduras, por lo que en nuestro caso intentamos sustituir los eritemas de piel.

Estas lesiones varían en gravedad desde un ligero eritema quemaduras muy dolorosas y ampollas en los casos más graves, esta enfermedad depende del área de exposición de piel siendo que cuando se ve afectada grandes cantidades de piel, se encuentran como síntomas escalofríos, fiebres, náuseas, y algunas veces prurito.

Los síntomas de la quemadura solar son el resultado directo de la lesión o destrucción de células en la capa celular Espinoza presente en la piel, viendo como mecanismo más probable la desnaturalización de sus Constituyentes proteicos, las sustancias que se liberan en esta
destrucción son similares a la histamina, generando la dilatación de los vasos sanguíneos y del eritema. Causando de esta manera también la hinchazón de la piel o llamado edema y estimula las células basales de la piel a la proliferación.

Durante el periodo de latencia por la degradación de las sustancias foto químicas producidas por la inducción de la radiación solar en las células, estos radicales libres comienza la acostumbrada producción en cadena de sustancias secundarias con productos biológicamente activos los cuales se difunden a través de los vasos sanguíneos dérmicos, los cuales producen los síntomas característicos de las quemaduras solares.

Según lukiesh 4 Quién hizo una investigación de estos procesos biológicos en el mes de julio en los Estados Unidos se encontró las siguientes características cuantitativas de quemadura solar.

Eritema mínimo perceptible: se pone la piel rosácea y es apenas perceptible en la quemadura con un tiempo mínimo de 20 minutos de exposición al sol.

Eritema intenso: con una coloración roja brillante sin dolor producida en 50 minutos de exposición al sol.

Eritema doloroso: caracterizado principalmente por una eritema intenso, doloroso, que va desde intenso en un tiempo mínimo de 100 minutos de exposición al sol.

Eritema con ampollas: eritema intenso con formación de ampollas y mucho dolor coloración de la piel y descamación producido en un mínimo de 200 minutos de exposición al sol.
Está quemaduras solares no dejan cicatriz alguna, siendo que el eritema mínimo desaparece de 24 a 48 horas, diario tema con ampollas al cabo de una o dos semanas con la descamación propia de la piel.

6.7 Exposición crónica.

la exposición Crónica a la radiación solar intensa, de las personas que tienen trabajos manuales como obreros granjeros o marineros, es la que produce los casos de cáncer de piel, y daños del tejido conectivo de la dermis produciendo la denominada piel envejecida, así como el aumento de manchas de piel.

la exposición directa a la radiación solar también es la principal causante de otras enfermedades de la piel, Cómo ciertos tipos de dermatitis, que son producidas por la fotosensibilización, de ciertas sustancias químicas y colorantes presentes cuando se hace la exposición solar

Como la tetrachlorosalicínalida.

Otro ejemplo es la dermatitis de Berlock⁵ Qué es producida por la presencia de colofonia y una exposición al sol, Lerner, Bertrock, Fitzpatrick,⁶ sugieren que los P - psoralenos presentes en La bergamota son los causantes de la dermatitis de berlock.

Existen pruebas suficientes que avalan la exposición a la radiación solar, con la incidencia de cáncer de piel sobre todo con las radiaciones de longitudes de onda eritemogenicas y
carcinogénicas, por lo tanto pers4 sostiene que los cánceres de piel se presentan en las zonas del planeta que tienen mayor incidencia longitudes de onda corta UV.

Roffo7 es quién demostró que la mayor producción de tumores malignos se presentan en la zona del cuerpo descubiertas expuestas con mayor área a la radiación solar como cara cuello brazos y manos.

Pasei8 demostró que los Marineros son las personas que tienen mayor tiempo de exposición solar en años y Por ende son el grupo de personas que más tiene incidencia de cáncer de piel, también demostró que las personas de piel Clara son más susceptibles que las personas de piel oscura en la producción de esta clase de tumores, y que los negros son los que presentan mayor resistencia a la aparición de estos tumores, incidiendo directamente que la piel oscura es la defensa evolutiva contra esta enfermedad.

Auerbach9 fue quién determinó el aumento en los casos de cáncer solar hacia el sur del Ecuador, que se duplica por cada \(3° 48´\) en reducción de la latitud, hallándose que el aumento de la radiación solar es mayor en las latitudes meridionales que la septentrionales.

Esto condujo a que Knox10 formulara como una sugerencia la incorporación de los compuestos activos que llevan las cremas solares a otros productos como las bases cosméticas cremas de piel y todo compuesto como lociones, perfumes, y cremas de afeitar siendo la \(2,4\) - hidroxofenona la seleccionada para ser añadida en todos estos compuestos la que produce la protección y no a broncea.
6.8 Radiación solar y sus efectos sobre la piel.

Radiación solar está compuesta por el espectro continuo de longitudes de onda, desde el infrarrojo pasando por el visible llegando hasta la región del UV, siendo que las radiaciones infrarrojas están por encima de 770 nm, visible está comprendida entre los 400 y 770 nm y la radiación UV que nos trata comprender longitudes de onda de 290 y 400 nm.

De la longitud de onda sobre la piel hacen que esté responda de diferentes maneras, enrojecimiento de la piel producido por la radiación visible e infrarroja comprende todo el espectro 390-1400 nm parece rápidamente y me lo hacía el final de la exposición.

Las radiaciones UVs de 320 390 nm inducen la pigmentación, siendo no eritemogenicas.

Los eritemas se producen original y esencialmente por la exposición a longitudes de onda más bajas entre 390 y 290 mm de radiación UV y también se produce por longitud de onda aún más corta.

Los investigadores han tratado de definir Cuáles son las regiones aisladas del espectro UV que origina la quemadura solar y el bronceado.

Ya se han realizado investigaciones con radiación UV artificiales como las lámparas de arco de varios tipos debe recordarse que la radiación total de estas Fuentes incluyen alguna radiación de longitud de onda y tan baja como 200 de nm y a pesar de que las longitudes de onda más bajas el filtro de la radiación solar por el ozono de la atmósfera superior, investigadores cosmetólogos tiene que someterse a la interacción de las lámparas solares artificiales y rayos solares.
Luke y Taylor diseñaron una investigación muy clásica en este campo estableciendo las curvas del espectro de producción de bronceado y eritema.

Ellos utilizaron una gama de filtros para aislar bandas estrechas de longitudes de onda desde la radiación producida por una lámpara eléctrica de arco, bajo un filtro de agua y absorber el calor, descubrieron que la acción sobre las áreas expuestas es dependiente de la longitud de onda de la energía la cual se había expuesto.

ellos evaluaron el eritema y el bronceado inmediatamente después de la exposición al día siguiente y durante las semanas posteriores.

al examinar la piel bajo la radiación UV concluyeron que el eritema y el bronceado se pueden producir simultáneamente pero un intenso eritema oculta el bronceado.

Con lo que tiene que ver con la longitudes de onda, encontraron que a longitudes de onda superiores a unos 330 nm, las zonas aparecían bronceadas y tostadas inmediatamente después de la exposición a la energía UV, seguido de la producción de un eritema junto al bronceado.

sus investigaciones hallaron que las longitudes de onda de 334, 2 y 366, 3 nm son especialmente efectivas al producir el bronceado y un mínimo eritema.

Con longitudes de onda de 295 - 315 nm el efecto no es inmediato pero si se produce el eritema algunas horas después siendo este definido.

Al cabo de unos días el eritema desaparece quedando el bronceado.

a 250 - 270 mm el eritema es superficial desapareciendo rápidamente y sin producir el bronceado.
No se encontraron diferencias en la velocidad de desaparición del eritema del bronceado producidos a longitudes de onda diferentes.

Estos investigadores concluyen que la curva del espectro eritemogénico no se puede separar de la curva de bronceado a longitudes de onda superiores a los 295 nm, al menos para aquellos efectos del bronceado que pueda aparecer al cabo de 12 horas, donde eritema alcanzado su máximo.

estos mismos investigadores utilizando exposiciones suberitemogénicas intermitentes, determinaron que una única exposición del 40% inferior a una que no produce bronceado ni eritema si se aplica intermitentemente, produce eritema o bronceado.

Lo cual indica que para tener el bronceado las exposiciones debe ser lo suficientemente prolongadas como para producir algo de eritema.

Bloom clasificó las radiaciones por debajo de 320 nm como eritematosas, y las de 300 a 420 mm como melanogenica.

en estos trabajos se llegar a las siguientes conclusiones sobre la radiación UV las cuales son que se pueden dividir en tres bandas.

La zona UV - A también denominada radiación UV de onda larga con longitudes de onda entre 320 a 400 mm con un máximo de 340 mm, es la zona responsable del bronceado directo de la piel sin inflamación preliminar, esto es debido a la foto oxidación de la forma leuco de la melanina presente en la capa superior de la piel, presentándose una producción de eritema.
Zona UV - B de la radiación UV está entre las longitudes de onda de 290 y 320 nm se le conoce como la radiación de quemaduras solares o radiación UV media con un máximo eficacia alrededor de los 297,6 nm está esta es la zona UV eritematogena productora de las quemaduras solares así como en reacciones irritantes que conducen a la formación de melanina y al desarrollo del bronceado.

La zona UV - C es la conocida radiación UV germicida comprende longitud de onda de 200 y 290 mm es perjudicial para el tejido, y la que elimina la vida es filtrada por el ozono de la atmósfera y solamente se puede hacer sintéticamente en el laboratorio esta produce eritema y no bronceado.

Las bandas A, B y C de la radiación ultravioleta emiten diferentes cantidades de energía y producen reacción eritemógena a diferentes intervalos de tiempo después de la exposición. Se requieren aproximadamente 20-50 J cm\(^{-2}\) de radiación UV-A para producir eritema mínimo perceptible en comparación con sólo 20-50 mJ cm\(^{-2}\) de energía UV-B, y 5-20 mJ cm\(^{-2}\) de energía UV-C. En el caso de la energía UV-A, el eritema de la piel producido como resultado de la exposición a esta radiación alcanza su máxima intensidad aproximadamente a las setenta y dos horas después de la exposición, mientras que, en el caso de la radiación UV-B, la reacción eritemógena alcanza su máxima intensidad al cabo de las seis a veinticuatro horas después de la exposición. Además, las proporciones de energía de diferentes longitudes de onda varían con muchos otros factores, tales como el momento del día, la estación del año, la altitud, la latitud, la humedad y la presencia de humo o partículas de sucedad en la atmósfera.
6.9 Concepto de E-viton y mínima dosis eritemógena

Para cuantificar la energía eritematósa, LUCKIESH y TAYLOR9 adoptaron como unidad de flujo eritematoso, independientemente de la longitud de onda, el E-viton, equivalente a 10 microwatios de energía radiante a 296,7 nm de longitud de onda donde el efecto eritemógeno es máximo. La unidad de intensidad del flujo eritemógeno es 1 E-viton cm\(^{-2}\) (también se denomina Finsen). La medida de la intensidad es indirecta y se basa en la premisa de que, para producir un eritema mínimo perceptible sobre una media de piel no bronceada, se requiere una exposición de aproximadamente 40 E-viton min cm\(^{-2}\) de piel. Así, un eritema mínimamente perceptible (MPE, *minimal perceptible erythema*) se produce por una de las siguientes exposiciones: 1 E-viton cm\(^{-2}\) actuando durante cuarenta minutos. 10 E-viton cm\(^{-2}\) actuando durante cuatro minutos. 40 E-viton cm\(^{-2}\) actuando durante un minuto. En las figuras 1 y 2 se muestra la intensidad de energía solar ultravioleta eritemógena en E-viton cm\(^{-2}\) sobre un plano horizontal con variaciones en horas durante tres días determinados.
La energía requerida para producir un eritema mínimo perceptible se conoce actualmente como MED (dosis mínima de eritema, MED, mínima erythema dose). Se ha determinado tanto por radiación monocromática como policromática. ROTTIER utilizó el tiempo requerido por el eritema ultravioleta (a diferencia del eritema caliente) en desarrollarse y desaparecer como una medida de la gravedad de la reacción eritematosa. El Eritema UV aparece varias horas después de la lesión producida en la piel, y el período de latencia depende de la dosis ultravioleta. Así, la latencia asociada con 1 MED es de 8-10 horas, mientras que con 8 MED puede disminuir a una o dos horas. El eritema producido por una dosis superior a 3 MED puede persistir durante
varios días, mientras que veinticuatro horas después de tal dosis puede dar un edema que persiste varias horas. Dosis mayores pueden causar edema grave durante días, mientras que el eritema puede permanecer durante meses, aunque puede resultar imperceptible bajo un bronceado intenso. Cada longitud de onda tiene una dosis eritemógena mínima específica, y una representación gráfica de log MED (s cm\(^{-2}\)) frente a la longitud de onda (nm) para longitudes de onda de 250 nm hasta aproximadamente 550 nm da un «espectro de acción» que demuestra que la piel es más sensible a radiaciones de longitud de ondas de 250-297 nm, y, con mucho, menos sensible a longitudes de onda superiores. KREPS 12 estudió la respuesta relativa de «piel caucasiana normal» a radiación monocromática, y encontró que variaba marcadamente con la longitud de onda de la radiación. La producción de eritema y la producción posterior de pigmento melánico existen ambos a una longitud de onda máxima de 296.7 nm, y disminuye en factores de 10 a cada una de las siguientes longitudes de onda: 307, 314, 330 y 340 nm. Existen ligeras diferencias en las definiciones de MED. Según una definición, es la cantidad de energía procedente de cualquier fuente requerida para producir una reacción de enrojecimiento perceptible de la piel. ANDERSON 13 lo definió como el tiempo en segundos requerido por una lámpara ultravioleta para producir una zona de eritema que se desarrolla después de seis horas y aún continúa visible después de veinticuatro horas. BLUM y TERUS 14 definen MED como la cantidad de radiación electromagnética requerida por unidad de superficie para producir un eritema perceptible en un tiempo especificado después de la exposición. Actualmente, se puede definir MED como el tiempo de exposición a cualquier fuente determinada de UV (sol o lámparas UV) requerida para producir un eritema que se desarrolla después de seis horas y aún es visible después de veinticuatro. La cuantificación energética de la radiación productora de quemadura solar propuesta por LUCKIESH se ilustra en la tabla 1,
en la cual el grado de la quemadura solar resultante de diferentes tiempos de exposición se relaciona con la intensidad de flujo eritematoso y la dosis mínima de eritema (MED). La duración de tiempo requerido para producir el eritema mínimo perceptible y, por tanto, 1 MED, depende tanto de la cantidad de energía emitida por la fuente de radiación, como de la respuesta de la piel de un individuo dado a la luz solar, que a su vez dependerá de su pigmentación. El tiempo requerido para producir un MED es menor en individuos de piel clara que en los de piel oscura. El MED para una persona de piel oscura se ha publicado que es de aproximadamente 33 veces mayor que para un caucásico de tez clara. Las reacciones a la exposición de la luz solar también varían con la estación y el momento del día. Por ejemplo, al nivel del mar, la energía ultravioleta de la radiación solar es superior entre diez y catorce horas a mediados del verano, con un máximo de energía UV-B que cae sobre la piel al mediodía. Por la mañana temprano o al anochecer, cuando la luz solar cae sobre la piel en un ángulo inferior, la intensidad de la energía solar es considerablemente más baja y es más improbable que se produzca quemadura solar.

Tabla 1: Cuantificación energética de radiación productora de quemadura solar.

<table>
<thead>
<tr>
<th>Grado de eritema</th>
<th>Exposición (min)</th>
<th>$E_{-vi \ ton}$ (s cm$^{-2}$)</th>
<th>Valor MED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eritema mínimo perceptible</td>
<td>20</td>
<td>2500</td>
<td>1.0</td>
</tr>
<tr>
<td>Eritema intenso</td>
<td>50</td>
<td>6250</td>
<td>2.5</td>
</tr>
<tr>
<td>Quemadura solar dolorosa</td>
<td>100</td>
<td>12500</td>
<td>5.0</td>
</tr>
<tr>
<td>Quemadura solar con ampollas</td>
<td>200</td>
<td>25000</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Los diferentes tiempos de exposición requeridos para producir varios grados de quemaduras solares en el promedio caucásico no protegido y no bronceado pueden verse en la tabla 2, que también ilustra sobre las diferencias en exposiciones para producir los mismos efectos a diferentes latitudes. El tiempo de exposición para producir quemaduras solares puede ser considerablemente reducido por reflejo de radiación ultravioleta adicional procedente de nieve y arena de la playa. Mecanismo protector de la piel Los dos factores responsables principales de la protección natural de la piel frente a quemaduras solares son el espesor del estrato córneo y la pigmentación de la piel.

Tabla 2 Tiempos de exposición para varios grados de quemaduras solares Mecanismo protector de la piel

<table>
<thead>
<tr>
<th>Grado de quemadura</th>
<th>Valor MED</th>
<th>New Jersey (lat. 40°N)</th>
<th>Florida (lat. 25°N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eritema mínimo perceptible</td>
<td>1</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>Eritema intenso</td>
<td>2</td>
<td>42</td>
<td>25</td>
</tr>
<tr>
<td>Quemadura solar dolorosa</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Quemadura solar con ampollas</td>
<td>8</td>
<td>165</td>
<td>120</td>
</tr>
</tbody>
</table>

Los dos factores responsables principales de la protección natural de la piel frente a quemaduras solares son el espesor del estrato córneo y la pigmentación de la piel. Bibliográficamente, la naturaleza del mecanismo protector de la piel han demostrado que la radiación solar aumenta la velocidad mitótica de las células epidérmicas, originando un engrosamiento del estrato córneo en el transcurso de cuatro a siete días y, de este modo, hacen
lo más impermeable el paso de la radiación eritemógena. Cierto grado de protección a quemadura solar se proporciona por un incremento en el contenido de melanina de la epidermis. Los gránulos de melanina que se forman en las células de la capa basal de la piel a consecuencia de la acción de la radiación UV-B emigran hacia arriba en dirección al estrato córneo y a la superficie de la piel, donde se piensa que son oxidados por la radiación de la zona UV-A. Estos gránulos se desprenden finalmente durante la descamación, ocasionando a la piel su pérdida de inmunidad a las quemaduras solares. Los efectos dolorosos posteriores de la radiación solar sobre la piel no protegida, que tan frecuentemente siguen a un baño de sol, normalmente pueden prevenirse con una exposición gradual. La exposición inicial (permitida según la sensibilidad del individuo en concreto) no debe exceder de uno a quince minutos, y debe aumentarse progresivamente, siendo el aumento diario en la exposición del orden del 40 por 100 respecto al día anterior. Esto garantizará el desarrollo de una inmunidad completa a las quemaduras solares al cabo de diez a doce días. La máxima pigmentación se puede alcanzar después de más de cien horas de exposición. HAIS y ZENISEK 16 han sugerido que el ácido urocánico presente en el estrato córneo, en proporción del 0,6 por 100, puede actuar como un agente filtro fisiológico natural, al absorber la radiación ultravioleta del intervalo 300-325 nm. Su eliminación de la piel durante el baño explica el incremento de sensibilidad de la piel a la quemadura solar. ROTTIER 11 propuso una clasificación arbitraria de las personas en tres grupos según su reacción a la radiación solar. Grupo 1: “Los insensibles” con buena habituación y pigmentación. Grupo 2: “Los sensibles” con mala habituación y sin pigmentación. Grupo 3: “Los enfermos” con reacción cutánea patológica a la radiación solar. Indicó que los holandeses pertenecientes al Grupo 1 pueden recibir 1-3 MED 306 de una a tres horas en una primera exposición del torso al sol de verano. Esto no daña su piel. La repetición
de tales dosis en los días siguientes producirá gradualmente un bronceado marrón-rojizo. Los individuos, después de una semana de exposición, toleran fácilmente de ocho a diez horas de radiación solar por día, incluso en latitudes mediterráneas. Los individuos del Grupo 2 pueden recibir 4-10 MED 306 en una primera exposición de una hora. Esto puede causar una quemadura solar desagradable por la tarde. Los individuos de este grupo nunca deben exponerse al sol durante períodos de tiempo superiores a los del primer grupo, y se ponen rojos como langostas sin obtener mucho bronceado. Los individuos insensibles no requieren un alto factor de filtro y, para conseguir bronceado, necesitarán un eritema bastante intenso. Como filtros solares utilizarán normalmente un aceite que no filtre la longitud de onda ultravioleta corta. Por otro lado, los individuos sensibles necesitarán protección real frente a los rayos ultravioleta, con el fin de resistir exposiciones más prolongadas sin ninguna quemadura solar desagradable.

6.10 FORMULACIONES CON FILTROS SOLARES Y BRONCEADORES

6.10.1 Introducción

La finalidad de los preparados filtros solares y bronceadores es prevenir o disminuir los efectos perjudiciales de la radiación solar o colaborar en el bronceamiento de la piel sin ningún efecto doloroso.

6.10.2 Clasificación filtros solares según su aplicación
Según la intencionalidad de su aplicación, los filtros solares se pueden clasificar de la forma siguiente. 1. Los agentes preventivos de quemadura solar se definen como filtros solares que absorben el 95% o más de la radiación ultravioleta dentro de longitudes de onda 290-320 nm. 2. Los agentes bronceadores al sol se definen como filtros solares que absorben al menos el 85% de la radiación ultravioleta dentro del intervalo de longitudes de onda 290 a 320 nm, pero transmiten radiación ultravioleta de longitudes de onda superiores a los 320 nm y producen un ligero bronceado transitorio. Estos agentes producirán cierto eritema, pero sin dolor. Los filtros solares de estas dos categorías son filtros solares químicos que absorben una zona específica de radiación ultravioleta. En alguna circunstancia, los mismos filtros solares se pueden emplear en ambos tipos de productos, pero a concentraciones diferentes (menores en un producto bronceador solar). 3. Agentes bloqueantes solares opacos, cuyo fin es suministrar la máxima protección en forma de una barrera física. Los agentes que con más frecuencia se utilizan en este grupo son dióxido de titanio y óxido de zinc. El dióxido de titanio refleja y dispersa prácticamente toda radiación en las zonas ultravioleta y visible (290-777 nm), de modo que evita o minimiza tanto la quemadura solar como el bronceado. Sin embargo, se debe destacar que los agentes bloqueantes solares opacos basados en sustancias inorgánicas no son los únicos compuestos que pretenden conferir la máxima protección frente a la radiación solar. «Supershade 15», un producto de Plough Corporation que contiene una proporción del 7% éster del ácido octil-dimetil-p-aminobenzoico y el 3% de oxibenzona, se declara tener un factor de protección solar de 15), y proporcionar una protección completa frente a UV-B. También pretende que con su uso regular puede prevenir el cáncer cutáneo son los preparados paliativos y simulados. Los paliativos se destinan a aliviar el dolor y la irritación resultantes de una exposición excesiva al sol; muchos de ellos se adquieren en droguerías de barrio o tiendas
de Bogotá. Los preparados simulados se destinan para aquellos que desean mostrar una piel morena en un tiempo mínimo y con el menor dolor o trastorno posibles. Son preparados que esencialmente broncean la piel o promueven la síntesis de sustancias melanoides en la piel.

Agentes filtros solares Los filtros solares, bien dispersan con eficacia la luz incidente o absorben la porción eritemógena de la energía radiante del sol. Las sustancias pulverizadas opacas, cuando se aplican en la piel en estado seco o incorporado en vehículos adecuados, se utilizan para dispersar la radiación ultravioleta que incide sobre ellos.

El óxido de zinc es el más eficaz de tales polvos y es superior al dióxido de titanio en este aspecto. Otros polvos que se emplean para este fin, no obstante su ínfima eficacia, son caolín, carbonato cálcico, óxido de magnesio, talco, etc. Evidentemente, el tamaño de las partículas del polvo empleado es un factor de considerable importancia en tales preparados. A pesar de que los polvos de este tipo se clasifican muy bajos en las ventas de preparados antquemadura solar, cuando se aplican como una segunda línea de defensa sobre una base adecuada de filtro solar, suelen presentar posibilidades dispersantes de la radiación. El tipo más importante de filtros solares es el que actúa absorbendo la radiación eritemógena ultravioleta. Las propiedades imprescindibles en un filtro solar son: 1. Deben ser eficaces en absorber la radiación eritemógena en el intervalo de 290-320 nm sin descomposición que pueda reducir su eficacia u originar compuestos tóxicos o irritantes. 2. Deben permitir la transmisión total en el intervalo 300-400 nm para permitir el máximo efecto bronceante. 3. No deben ser volátiles y deben ser resistentes al agua y al sudor. 4. Deben poseer características adecuadas de solubilidad para hacer posible la formulación de un vehículo cosmético adecuado para adaptarse a la cantidad requerida de filtro solar. 5. Deben ser inodores o al menos suficientemente suaves para ser aceptados por el usuario y satisfactorios en otras características físicas relacionadas, tal como
pegajosidad, etc. 6. No deben ser tóxicos, irritantes, ni sensibilizantes. 7. Deben ser capaces de retener su propiedad protectora durante varias horas. 8. Deben ser estables en las condiciones de uso. 9. No deben manchar la ropa. Son importantes la ausencia de toxicidad y la aceptabilidad dermatológica, porque, como ha destacado DRAIZE 17, «los filtros solares son únicos como extensas diarias a una gran superficie del cuerpo y, además, se aplican a piel ya dañada por quemaduras del sol o del viento». Más aún, se utilizan en personas de todos los grupos de edades y en diferentes estados de salud. Posteriormente, DRAIZE indicó que los ensayos farmacológicos y toxicológicos deben establecer un margen de seguridad de ocho veces, y estos requieren estudios de toxicidades dérmicas agudas y subagudas, y estudios de sensibilización potencial. Durante la Segunda Guerra Mundial se realizaron investigaciones sistemáticas con varias sustancias apropiadas para proporcionar protección a soldados combatientes frente a quemaduras solares en países tropicales y a aviones derribados sobre islas tropicales. Esto condujo a la introducción de muchas nuevas sustancias orgánicas, cada una de las cuales se ha seleccionado en cuanto a eficacia y toxicidad. KLARMANN 18 recopiló una extensa lista de filtros solares. Incluye las siguientes sustancias: Ácido para-aminobenzoico y sus derivados (esteres de etilo, isobulito, glicerilo; ácido jítaw-dimetilbenzoico). Antranilatos (p. ej., orto-aminobenzoatos, esteres de metilo, mentilo, fenilo, bencilo, feniletilo, linalilo, terpenilo y ciclohexenilo). Salicilatos (esteres de amilo, fenilo, bencilo, mentilo, glicerilo y dipropilen gicol). Derivados de ácido cinámico (esteres de mentilo y bencilo; alafeni cinamonitrilo; piruvato de butil cinamoilo). Derivados del ácido dihidroxicinámico (umbeliferona, metilumbeliferona, metilacetato-umbeliferona). Derivados del ácido trihidroxicinámico (esculetina, metilesceutetina, dafnetina y los glucósidos esculina y dafnina). Hidrocarburos (difenilbutadieno, estilbeno). Dibenzalacetona y benzalacetofenona.
Naftosulfonatos (sales sódicas de ácidos 2-naftol-3,6-disulfónico y 2-naftol-6,8-disulfónico).

Acido dihidroxinaftoico y sus sales. *Orto* y *para*-hidroxibifenilsulfonatos. Derivados de cumarinas (7-hidroxi, 7-metil, 3-fenil). Azoles (2-acetil-3-bromoindazol, fenil benzoazol, metil naftoxazol, varios aril benzotiazoles). Sales de quinina (bisulfato, sulfato, cloruro, oleato, tanato). Derivados de quinolina (sales de 8-hidroxiquinolina, 2-fenilquinolina). Ácidos úrico y violúrico. Acido tánico y sus derivados Hidroquinona. KLARMANN destacó que el isomerismo desempeña un papel importante en la determinación de la capacidad absorbente, e ilustró este hecho con curvas de absorción para los ácidos *orto*-, *meta*- y *para*-aminobenzoico, que indicaron la superioridad del isómero *para* sobre los isómeros *orto* y *meta*. Como contraste, el ácido *orto*-hidroxibenzoico (ácido salicílico) tiene un valor elevado de absorción de la radiación eritemógena, mientras que el ácido *para*-hidroxibenzoico prácticamente no tiene ninguno.

Los agentes filtrantes incluyen dióxido de titanio, óxido de zinc, fenil salicilato, vaselina amarilla, vaselina ámbar, ungüento de óxido de zinc, lociones conteniendo salicilato de mentilo, un preparado solar patentado, vaselina veterinaria roja oscura y otros varios tipos de vaselina. Los diferentes tipos de bases incluyeron emulsiones agua-aceite de lanolina y vaselina, crema base evanescente y base de vaselina. Una vaselina veterinaria roja oscura fue bastante opaca a la energía eritemógena, y su uso aislado proporcionó protección completa a la piel bajo una exposición equivalente a veinte horas de la radiación solar más fuerte medida durante un período de cuatro años en Santander. Este compuesto demostró no ser irritante y adherirse firmemente a la piel. También se halló que el fenil salicilato (salol) es un filtro solar excelente cuando se usa a una concentración de 10 por 100 en una base adecuada, tal como vaselina, particularmente en una vaselina que posee propiedades de filtro solar eritemógena por sí misma.
Los experimentos demuestran que el fenil salicilato no es tóxico. También el óxido de zinc demostró ser de valor categórico en la prevención de quemaduras solares, pero no asociado a fenil salicilato, con el cual los resultados no eran tan buenos cuando se añadía óxido de zinc. El dióxido de titanio no demostró ser un protector muy fiable juzgado en una muestra que lo contenía al 20% en vaselina amarilla. La vaselina amarilla demostró poseer propiedades filtrantes solares seguras frente a la energía ultravioleta a longitudes de onda 296,7 y 302,2 nm, mucho más que las que posee la vaselina blanca. En la práctica, de la gran gama de compuestos que poseen características de absorción satisfactorias que han sido repetidamente enumeradas en la literatura, los filtros solares se han limitado a p-aminobenzoatos, p-dialquilaminobenzoatos, salicilatos y cinamatos y, con frecuencia, se han empleado mezclas de estos compuestos. Una asociación de cinamato de bencilo y salicilato de bencilo en una base de emulsión se utilizó en el primer preparado filtro solar comercializado en los estados unidos de Norteamérica en 1928.

Varios productos patentados se han basado en el salicilato de metilo. Diferencia de algunos salicilatos, el éster mentílico del ácido salicílico es no irritante, inodoro y actúa inicialmente como un filtro solar satisfactorio a concentraciones aproximadamente del 10%. Sin embargo, el salicilato de mentilo experimenta alteración química al exponerse a la luz, con el resultado que sus propiedades filtrantes solares disminuyen considerablemente. El antranilato de mentilo, comercializado por Givaudan bajo una denominación patentada, demostró proporcionar máxima eficacia a una concentración de aproximadamente el 4%.

En la figura 3 se reproduce el espectro de transmisión obtenido por PERNICH y GALLAGHER para p-dimetilaminobenzoato de etilo. STAMBOVSKY28 expresó la opinión de que esteres del ácido para-aminobenzoico a concentraciones comparables poseían la
capacidad más elevada de absorción de todas las sustancias químicas disponibles en aquel tiempo. Manifestó que de los veintisiete productos bronceadores promocionados activamente en el mercado de USA en 2015, diecinueve empleaban derivados de ácido aminobenzoico o ácido salicílico. También se han patentado29 composiciones filtros solares que contienen esteres del ácido p-dimetilaminobenzoico con alcoholes monohídricos de C5-C18. La idoneidad de los filtros solares para aplicación comercial se determina por su eficacia de filtro solar, solubilidad y estabilidad en las formulaciones dadas. Se indica que los esteres superiores del ácido p-dimetilaminobenzoico con propiedades de filtro solar de absorción ultravioleta son superiores a los alquil esteres inferiores tanto del ácido p-aminobenzoico, como del ácido dimetilaminobenzoico.

Figura 3 Espectro de transmisión de capas de 0,5 cm de concentraciones diferentes de pdimetilaminobenzoato de etilo (en alcohol).
En general, los esteres del ácido p-dimetilaminobenzoico son filtros solares más eficaces que los esteres del ácido p-aminobenzoico y superiores a éstos en relación con la estabilidad, almacenamiento y uso. También son menos reactivos cuando se incorporan en las formulaciones cosméticas de tipo usual. Por lo que concierne a los esteres del ácido p-dimetilaminobenzoico, los esteres inferiores son apreciablemente solubles en agua, pero insolubles en aceites, y como resultado de esto se eliminan fácilmente de la piel durante el baño o por el sudor. Incrementando el peso molecular, los esteres se transforman en progresivamente menos susceptibles a la eliminación con agua; así confieren una duración más prolongada y una protección más eficaz frente al eritema. Los alquil esteres superiores, esteres amilo, hexilo, heptilo y octilo del ácido p-dimetilaminobenzoico son líquidos oleosos de los cuales se afirma que forman películas continuas y adherentes que no son fáciles de eliminar con agua, ejercicio, abrasión o lavado. Se afirma que sus soluciones en aceites mineral, vegetal y animal se mantienen completamente homogéneas en el almacenamiento durante períodos de tiempo prolongados. Composiciones filtros solares bastante estables a la radiación actínica, que no son fácilmente eliminados de la piel, han sido reivindicados por la GAF Corporation. Como filtros solares activos, estas composiciones emplean compuestos obtenidos condensando un benzaldehído con una ceto ó tioceto hidrazina. Los compuestos específicamente reivindicados son:

Figura 4 Condensados de un benzaldehído con una ceto ó tioceto hidracina

![Diagrama de compuestos](image-url)
Estos filtros solares se pueden usar asociados a aditivos convencionales. La selección de una base apropiada que no sea fácilmente eliminada de la piel y, por tanto, garantice un período prolongado de protección frente a quemaduras solares, ha sido el objeto de una patente concedida a Boots Puré Drug Co30. Las composiciones patentadas contienen un filtro solar, preferentemente \(p \)-dimetilaminobenzoato de etilo, en un diluyente o portador cosméticamente acceptable que contiene no menos del 5\% del aceite de ricino.

6.10.3 Sustancias filtros solares poliméricas

Todos los compuestos normalmente utilizados como filtros solares poseen relativamente bajo peso molecular y muchos de ellos son eliminados bastante rápidamente de la piel en contacto con agua, necesitándose aplicaciones posteriores si se continúa necesitando protección frente al eritema. Un intento para evitar la necesidad de reaplicaciones ha conducido al desarrollo de filtros solares poliméricos insolubles en agua pero solubles en álcalis. Las formulaciones descritas en manual del ingeniero químico contienen al menos un 1\% de un filtro solar polimérico soluble en álcalis absorbente UV en un vehículo apropiado. El polímero en cuestión se produce a partir de al menos dos comonómeros esenciales: 1. Un compuesto etilénicamente insaturado capaz de absorber la radiación ultravioleta de la zona eritemógena, pero que transmita la radiación que produce el bronceado, representados por ciertos acrilatos, metacrilatos y benzoatos sustituidos, así como algunos éteres de 2,4-dihidroxibenzofenona, 2,2,4-trihidroxibenzofenona y éteres derivados de benzotriazol. 2. Un comonómero ácido
especificado como un ácido carboxílico etilénicamente insaturado que contiene al menos un grupo carboxilo libre, ácido acrílico, ácido metacrílico, ácido itacónico, ácido crotónico, etc.

6.11 Tipos de piel y recomendaciones para la selección de filtros solares: El factor protector del sol.

El grado con que un producto filtro solar protege de las quemaduras solares y otros efectos dañinos de la exposición a la radiación solar varía con el tipo de piel individual. Un sistema de clasificación para productos filtrantes solares comprende cinco denominaciones de categoría de productos para satisfacer los requerimientos de diferentes tipos de piel. Los individuos se pueden clasificar en seis grupos según el tipo de piel e historial de bronceado:

1. Siempre se quema fácilmente; nunca se broncea (sensible).
2. Siempre se quema fácilmente; se broncea mínimamente (sensible).
3. Se quema moderadamente; se broncea gradualmente (moreno ligero) (normal).
4. Se quema mínimamente; siempre se broncea bien (moreno moderado) (normal).
5. Apenas se quema; se broncea ampliamente (moreno oscuro) (insensible).
6. Nunca se quema; profundamente pigmentado (insensible).
El sistema del «factor de protección solar» (SPF, sunprotection factor) ha sido desarrollado por Plough Corporation para definir la eficacia relativa de agentes filtros solares para proteger la piel. Posteriormente fue recomendado por Grupo OTC (Over-the-Counter Panel), de la Administración de Alimentos y Medicamentos de los EE. UU. (US, Food and Drug Administration), como medio de identificar numéricamente la eficacia de varios productos filtros solares y proporcionar a los consumidores una guía de los productos adecuados para tipos particulares de piel. El SPF se ha definido como la relación:

\[
\frac{\text{energía UV para producir (MED) sobre piel protegida}}{\text{energía UV para producir (MED) sobre piel no protegida}}
\]

o como relación entre la exposición a rayos ultravioleta requerida para producir un eritema mínimamente perceptible sobre la piel protegida y la exposición que produciría el mismo eritema sobre la piel no protegida. La definición formal de SPF por el «OTC Panel» fue: (PS, protected skin; US, unprotected skin) donde MED(PS) es la dosis de eritema mínimo para piel protegida después de la aplicación de 2 mg cm\(^{-2}\) ó 2 μl cm\(^{-2}\) de la formulación final del producto de filtro solar, y MED(US) es la dosis de eritema mínima para piel no protegida, esto es, la piel a la cual no se ha aplicado producto filtro solar. El SPF será mayor cuanto mayor sea la protección que pueda conferir el filtro solar. El panel ha propuesto que todo producto filtro solar debe ser valorado para el consumidor según el grado de protección que pueda proporcionar; los números de valoración varían de dos a ocho. Los productos con una valoración de ocho proporcionarán la máxima protección a los individuos que siempre se
queman con facilidad y nunca se broncean, mientras que los productos con una valoración de dos serán apropiados para los que apenas se queman y se broncean ampliamente. Por tanto, para los grupos de tipos de piel listados anteriormente se recomiendan los productos filtros solares con los siguientes SPF:

Tabla 3 Cuantificación energética de radiación productora de quemadura solar.

<table>
<thead>
<tr>
<th>Tipo de piel</th>
<th>SPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 o más</td>
</tr>
<tr>
<td>2</td>
<td>6-7</td>
</tr>
<tr>
<td>3</td>
<td>4-5</td>
</tr>
<tr>
<td>4</td>
<td>2-3</td>
</tr>
<tr>
<td>5</td>
<td>2z</td>
</tr>
<tr>
<td>6</td>
<td>no se indica ninguno</td>
</tr>
</tbody>
</table>

Las denominaciones de categorías de productos recomendadas al consumidor para seleccionar los tipos de filtros solares que proporcionan varios SPF son los siguientes:

Tabla 4 Cuantificación energética de radiación productora de quemadura solar.

<table>
<thead>
<tr>
<th>PCD 1: Producto de Mínima Protección Solar</th>
<th>Proporciona un valor SPF desde dos hasta inferior a cuatro y ofrece la menor protección, aunque permite el bronceamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCD 2: Producto de Moderada Protección Solar</td>
<td>Proporciona un valor SPF desde cuatro hasta inferior a seis, y ofrece protección moderada a quemadura solar, aunque permite algún</td>
</tr>
</tbody>
</table>
Se ha destacado que algunas personas, cuando utilizan por primera vez esta escala, pueden juzgar erróneamente la reactividad de la piel a la radiación solar. También se ha mencionado que el calor y la humedad elevados, el sudor y la natación pueden disminuir el valor SPF en cualquier momento para un individuo. En términos prácticos, un individuo que generalmente enrojece al sol después de veinte minutos de exposición puede permanecer al sol durante ciento veinte minutos si se aplica un filtro solar de protección extra (SPF 6), esto es veinte minutos x 6, siempre que el producto no se elimine por lavado o sea desprendido por el sudor. Un producto en la categoría máxima protección (es decir, SPF 8) protegerá a persona media que sufra quemadura solar en cuarenta minutos expuesta a la radiación solar en horas de quemaduras peligrosas entre 10.000 y 14.000, durante 40 x 8 = 320 minutos. Sin embargo, una vez que la piel se ha acostumbrado al sol (ha desarrollado la protección por medio de la pigmentación), se prolonga el período de autoprotección del individuo, y, puesto que el riesgo de quemadura solar disminuye, puede gradualmente sustituir un producto con PCD alto por un
producto con un PCD más bajo. Individuos muy sensibles que necesitan protección principalmente frente a la radiación solar se les recomienda usar un producto de la categoría de ultra protección (SPF 15 o superior). Para guía de consumidores, el panel ha recomendado las siguientes declaraciones de etiquetado que se han de situar de modo destacado en los paneles principales de los expositores:

1. Para productos de mínima protección solar (SPF 2): permanecer al sol dos veces más que antes sin quemadura solar.

2. Para productos de moderada protección solar (SPF 4): permanecer al sol cuatro veces más que antes sin quemadura solar.

4. Para productos de máxima protección solar (SPF 8): permanecer al sol ocho veces más que antes sin quemadura solar.

5. Para productos de ultra protección solar (SPF 15): permanecer al sol quince veces más que antes sin quemadura solar.

6.12 Arduino.

Gianluca Barbon 2016 (Comunicaciones informáticas, Volúmenes 89-90, 1 de septiembre de 2016, Páginas 128-140), "Los microcontroladores como Arduino son ampliamente utilizados por todo tipo de fabricantes en todo el mundo. La popularidad se debe a la simplicidad de uso de Arduino y la gran cantidad de sensores y bibliotecas disponibles para ampliar las capacidades básicas de estos controladores. La última década ha sido testigo de una oleada de soluciones de
ingeniería de software para Internet of Things", pero en varios casos estas soluciones requieren recursos computacionales que son más avanzados que los microcontroladores simples y con recursos limitados.”

6.13 Arquitectura Arduino.

Torrento artero 2013 indica que “Un microcontrolador es un circuito integrado o chip un dispositivo que Integra en un solo encapsulado un gran número de componentes y tiene la característica de ser programable.

Que es capaz de ejecutar de forma Autónoma una serie de instrucciones previamente definidas por nosotros.

No obstante cuando hablamos de placa Arduino hay especificar el modelo concreto, ya que existen varias placas Arduino oficiales, cada una con diferentes características, y como consecuencia entre otras cosas la cantidad de memoria utilizable, conviene conocer estas características para identificar qué placa Arduino es la que nos convendrá más en cada proyecto.

De todas formas Aunque puedan ser modelos específicos diferentes los microcontroladores incorporados en las placas pertenecen todos a la misma familia tecnológica, y su funcionamiento es bastante parecido entre sí.

En concreto, todos los microcontroladores son del tipo AVR arquitectura de micros aprobada por la marca ATME
6.14 ¿Qué quiere decir que Arduino sea software libre?

Arduino es una placa de Hardware libre y también un entorno y lenguaje de programación libre pero que es esta palabra libre exactamente.

Según la free software foundation organización encargada de fomentar el uso y desarrollo del software libre a nivel mundial, un software para ser considerado libre ha de ofrecer a cualquier persona u organización cuatro libertades básicas e imprescindibles los s.

Libertad 0: la libertad de usar el programa en cualquier propósito o sistema informático.

Libertad 1: la libertad de estudiar Cómo funciona internamente el programa, para dar las necesidades particulares. el acceso al código fuente es un requisito previo para esto.

Libertad 2: la libertad de distribuir copias se deseen.

Libertad 3: la libertad de mejorar el programa hacer pública las mejoras a los demás, y que la comunidad se beneficie.

Este programa es software libre ya que los usuarios tienen todas estas libertades. Así pues, el software libre es aquel que da a los usuarios la libertad de poder ejecutarlo copiarlo y distribuirlo a cualquiera y en cualquier lugar estudiar no cambiarlo y mejorar sin tener que pedir ni pagar permisos al desarrollador original y a ninguna otra entidad específica.
6.15 De Arduino Leonardo.

existen varias unidades o diferencias de placas Arduino pero la que trabajamos en este sistema es Arduino Leonardo la que nos presenta más ventajas y características propias para nuestra funcionalidad y desarrollo. Cómo es que contiene un puerto USB y entradas laterales análogas y digitales teniendo también una memoria interna de de 10 giga byte.

6.16 Octilmetoxinamato.

Es el filtro UV-B más usado en los estados unidos, es soluble en agua, tiene un bajo potencial irritante, se usa en cosméticos, con protector solar.

(Octlmetoxicinamato) o OMC, parsol mcx y xinoxato (2 es tóxico etil metoxicinamato) octinoxate o MC es el filtro más usado en los protectores solares coma con un pico de acción sobre longitudes de onda hasta 320 nanómetros y la eficacia del OEM se puede aumentar Cuándo es encapsulado en microesferas de polimetilmetacrilato punto uno de los mayores inconvenientes que tiene esa incompatibilidad con la avobenzona se hace inestable y fotolabil coma y se degrada a un poto producto cuando se expone a radiación ultravioleta por corto tiempo punto el sin oxathos cubre un espectro de hasta 289 nanómetros y es un filtro poco usado punto

7 METODOLOGIA.

el proyecto de tesis se realiza en el laboratorio de química ambiental de la finca los cristales, ubicada en torca localidad de Usaquén Bogotá Colombia, desde diciembre del año 2016 hasta la fecha de entrega de este proyecto el dia 10 de noviembre del año 2018 con una dirección av 7ª
No 200 f -104, finca de José Omar López Godoy a quien se da agradecimiento por prestar los equipos y materiales necesarios. Esta tesis determinada en tres partes bien específicas que son una parte química, parte electrónica, y una parte de programación, en la parte química se debe determinar las velocidades de degradación de compuestos activos qué sirven como bloqueadores solares, y cómo se determinaría una técnica fotométrica para determinar la vida útil de estos compuestos, a partir de esta idea se desarrolla un equipo electrónico a partir de una plaqueta Arduino Leonardo la cual contiene los elementos mínimos para determinar un análisis fotométrico de esta sustancia, y a partir de los dos hechos anteriores se escribe un programa computación en el lenguaje C++ que sea compatible con los otros dos problemas existentes, cuando se tengan estos tres sistemas resueltos se establecerá un método empírico por medio de una curva de calibración y los tiempos de degradación de las sustancias para cumplir el objetivo principal que es reemplazar o al menos actualizar los métodos vigentes de análisis para protección solar o (SPF).

7.1 Parte electrónica.

Todo el equipo se hizo en base a la plaqueta Arduino Leonardo, lo que se hizo es utilizar el valor del voltaje leído en el pin de entrada, el cual es a Sub Zero de la entrada analógica para Consecuentemente por medio de la circuitería del equipo Arduino Leonardo pasar los datos leídos en baudios a datos exportados en Excel, cuanto menos luz detecta el fotorresistor más datos o mayor valor será lo que aparezca en la página de Excel por eso es necesario que le reciba una señal analógica también mostrando los valores por el canal serial que fueron obtenidos en el
fotorresistor, el circuito se divide en dos secciones bien diferenciadas las cuales son la parte de la luz ultravioleta que recibe energía externa y la parte de la plaqueta Arduino y la fotocelda o la celda de reacción la cual está alimentada por el mismo PC.

El prototipop se desarrolla inicialmente en una palqueta roptoboard, cuando se establecieron los compobasicos que llevaría el circuito se llevo a prototipado, por medio del programa PCB WIZARD profesional edition, de software libre, el cual da las modificaciones principales y las herramientas básicas para llevar del esquema electrónico, al equipo ya terminado figura 5, se usó el FeCl₃ es para grabar o decapar el cobre en una reacción redox que oxida el cobre a cloruro de cobre (I) y luego a cloruro de cobre (II) en la producción del circuito impreso.

\[
\text{FeCl}_3 + \text{Cu} \rightarrow \text{FeCl}_2 + \text{CuCl}
\]

\[
\text{FeCl}_3 + \text{CuCl} \rightarrow \text{FeCl}_2 + \text{CuCl}_2
\]

Tabla 5 Procedimiento esquematizado de la fabricación del fotmetro uv

<table>
<thead>
<tr>
<th>Procedimiento para fabricación de equipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esquema y prueba con protoboard</td>
</tr>
</tbody>
</table>
Diseño con wizard pcb

grabar o decapar el cobre en una reacción redox con el FeCl₃.

Equipo soldado parte superior.

Equipo soldado parte posterior
7.2 De la programación.

La programación para el equipo Arduino Leonardo se realiza por medio de c ++ en esta programación se dan valores analógicos obtenidos por el puerto A0, y debe imprimir un valor idéntico al que lee en la celda de reacción, Durante cada segundo el equipo realiza 10 lecturas las promedia e imprime en la celda correspondiente de exel, por lo tanto en un dato de un minuto son 600 valores pero ya están promediados, después de hacer esta lectura la plaqueta Arduino toma control de la computadora, y del teclado y durante un segundo y dos milésimas exporta el segundo correspondiente, el valor promediado correspondiente, tecla enter y sigue al valor consecuente o siguiente, por último la programación y el sistema en sí deja un control específico para poder apagar todo el sistema a partir del pin 7 analógico, que está en la plaqueta Arduino como botón rojo. Figura 6

Figura 5 toma de datos en tiempo real con EXEL
7.3 De la parte química.

Para realizar los ensayos se utilizaron productos comerciales como tanga, y sunway, estos productos, se esparcieron sobre cubre objetos y se colocaron sobre la celda, para que la luz uv ejerciera su acción sobre el compuesto, para determinar que porcentaje de compuesto activo se halla en el producto comercial se realiza una curva de calibración con el compuesto octilmetoxicinamato figura 7 también conocido en el mercado como parsol, uvinol, o uxol, que fue desde 10 % en concentración hasta 1% disuelto en un vehículo liquido el cual es la glicerina, las propiedades del compuesto octilmetoxinamto están descritas en la tabla x .

Figura 6 octilmetoxinamto

8 RESULTADOS Y CONCLUSIONES.

8.1 Resultados.

La curva de calibración se realizó para absorbancia en función de tiempo entregando curvas exponenciales, las cuales indican claramente una reacción de primer orden por lo que se continuo con su linealización con la toma del logaritmo natural en función del tiempo, dando ecuaciones lineales los pares de graficas son las siguientes.
Figura 7 Pareja gráficos octilmetoxinamato en concentraciones y su linealización.

![Gráfico 1%](image1)

![Gráfico 1%](image2)

Figura 8 Pareja gráficos octilmetoxinamato en concentraciones y su linealización.

![Gráfico 2%](image3)

![Gráfico 2%](image4)

Figura 9 Pareja gráficos octilmetoxinamato en concentraciones y su linealización.

![Gráfico 3%](image5)

![Gráfico 3%](image6)
Figura 10 pareja gráficos octilmetoxinamato en concentraciones y su linealización.

![Gráficos de concentraciones y linealización](image)

Figura 11 pareja gráficos octilmetoxinamato en concentraciones y su linealización.

![Gráficos de concentraciones y linealización](image)

Figura 12 pareja gráficos octilmetoxinamato en concentraciones y su linealización.

![Gráficos de concentraciones y linealización](image)

Equation 1:

\[
y = 0.1248e^{-0.04x} \\
R^2 = 0.9142
\]

Graph 1:

- Absorbance (abs)
- Time (s)
- R² = 0.9142

Graph 2:

- ln (abs)
- Time (s)
- y = -0.0008x - 2.0812
- R² = 0.9142

Equation 2:

\[
y = 0.1001e^{-0.001x} \\
R^2 = 0.837
\]

Graph 3:

- Absorbance (abs)
- Time (s)
- y = 0.1001e^{-0.001x}
- R² = 0.837

Graph 4:

- ln (abs)
- Time
- y = -0.0012x - 2.3017
- R² = 0.837

For the specific concentration levels and linealization methods used, please refer to the graphs and equations provided above.
Figura 13 pareja gráficos octilmetoxinamato en concentraciones y su linealización.

Figura 14 pareja gráficos octilmetoxinamato en concentraciones y su linealización.
Figura 15 pareja gráficos octilmetoxinamato en concentraciones y su linealización.

\[y = 0.1279e^{-0.04x} \]
\[R^2 = 0.934 \]

Figura 16 pareja gráficos octilmetoxinamato en concentraciones y su linealización.

\[y = -0.0061x + 1.3317 \]
\[R^2 = 0.9837 \]
Figura 17 grafico bloqueador solar tanga abs en función del tiempo.

![Diagrama](image)

Figura 18 grafico bloqueador solar tanga ln abs en función del tiempo.
Figura 19 grafico bloqueador solar sunway abs en función del tiempo.

Figura 20 grafico bloqueador solar sunway abs en función del tiempo.
8.2 Curva de calibración factor SPF

Tabla 6 Curva de calibración SPF

| CURVA DE CALIBRACION: PENDIENTES DE LA LINEALIZACIÓN EN FUNCION DE LA CONCENTRACIÓN. |
|---|-------------------------------|
| pendiente t (s) / ln (abs) | % octildimetil |
| -8,00E-04 | 4 |
| -5,00E-04 | 6 |
| -3,00E-04 | 8 |
| -4,00E-04 | 9 |
| SUNWAY | 15,1 |
| TANGA | 47,1 |

Figura 21 Curva de calibración y ecuación de trabajo
8.3 CONCLUSIONES.

8.3.1 De la radiación uv -vis

la radiación solar está compuesta por un espectro electromagnético de radiaciones que van desde los 180 nm hasta los 1048 nm y para nuestro particular interés la región comprendida entre 180 y 420 nm, región llamada ultravioleta esta región se concluye tienen tres zonas denominadas UV-A, UV-B y UV-C, siendo de particular interés parte de la zona UV-B y la zona UV-C estas zonas son referenciadas debido a que la radiación ultravioleta de la zona B y las zonas C no es absorbida por las interacciones atmosféricas presentes , y Por ende es la que genera las reacciones bioquímicas de todos los seres vivos en la superficie de la tierra, y es de la cual prestamos particular interés porque la radiación que interactúa con nuestro órgano principal llamado piel.
8.3.2 Del hardware Arduino Leonardo.

Con el Hardware Arduino encontramos un sistema electrónico que es un conjunto de sensores circuitería de procesamiento y control actuadores y una fuente de alimentación.

El equipo diseñado tiene un sensor ultravioleta que obtiene información del mundo físico externo y la transformó en una señal eléctrica que pudo ser manipulada por la circuitería interna de control, utilizando en este caso un sensor de una fotorresistencia la cual convirtió una señal de luz ultravioleta de 290nm de longitud de onda en una señal de voltaje digital en unidades de baudios.

El diseño del Hardware permitió que los circuitos internos del sistema electrónico procesarán la señal eléctrica convenientemente.

La manipulación de dicha señal dependió del diseño de los diferentes componentes y Hardware del sistema como un conjunto lógico de instrucciones o la programación que se demostró Hardware tenía pregrabado y fue capaz de ejecutar de forma Autónoma.

En este caso los actuadores fueron la transformación de la señal eléctrica acabada de procesar por la circuitería interna del dispositivo diseñado y la información que fue leída directamente en un computador, procesada de nuevo por medio de hojas de Excel y sus respectivas ecuaciones de la ley de lambert Beer para hallar una respuesta en el mundo físico qué es lo que se buscaba.
ha de tenerse en cuenta que la fuente de alimentación para la luz ultravioleta proporcionó la energía necesaria para que se pudiera realizar todo el proceso descrito. Cómo es la obtención de información del medio que se procesó se analiza. Consecuentemente que una luz que tenía información solamente en una longitud de onda arbitraria se convirtió en información especializada y detallada que entregó características propias de un sistema en estudio. Cómo fue procesos químicos llevados a cabo por la degradación ultravioleta obtenemos energía sin ninguna clase de información y se transformó en información útil y valiosa que actúa en función de obtener información.

8.3.3 De la curva de calibración.

Para la curva de calibración a medida que se bajó la concentración disminuya el tiempo de equilibrio debido a que se consume más rápidamente. Cómo se observan en as bibliografía el compuesto activo de los bloqueadores no es uno solo, es una mezcla de óxido de zinc, óxido titanio, vaselina amarilla, Blanca, aceites, y el compuesto activo filtrante, que va en concentraciones bajas, cada uno actúa en una región del ultravioleta, y Por ende es que el bloqueador solar puede durar tanto tiempo cada uno de estos productos le confiere una característica, como mayor tiempo de duración, ayuda a la refractancia de la luz ultravioleta y durabilidad con respecto al agua salada a los jabones y al agua dulce.

En bibliografía también se puede observar como el medio es una parte fundamental de los bloqueadores solares, para las curvas de calibración se utilizó glicerina con respecto a las mezclas de octilmetoxinamato, esto conlleva a que a medida que el sistema le da energía la glicerina está cambia de viscosidad y se mueve, pasó en los puntos 7,5, y en 10, por lo tanto los bloqueadores solares son mejor en un sistema sólido como son las cremas comerciales quedando
demostrado que los bloqueadores solares líquidos se mueven de la piel y pierde su poder efectivo con respecto al tiempo.

8.3.4 De la curva y el método

La curva y el método demostraron claramente que se puede remplazar las técnicas actuales de análisis de productos solares, en las cuales el uso de personas de prueba es básico, con esta técnica se muestra como la reacción es posible llevarla acaba en forma, controlada y medida en tiempo real, determinando como se degrada el compuesto o los compuestos activos, presente en el producto a estudiar.

8.3.5 El orden de la reacción

Se determina claramente que las reacción de foto degradación por la acción de luz ultravioleta son reacciones de primer orden las cuales son directamente proporcionales de la concentración del compuesto activo, en consecuencia la capa de protector utilizada es la que da la intervención para evitar los diferentes tipos de eritemas producidos por la exposición solar.

8.3.6 Compuestos activos

Todos los compuestos activos que filtran las radiaciones ultravioleta son compuestos orgánicos del grupo carboxi, desde salicilatos hasta cinamatos dependiendo de la cantidad de enlaces dobles y la capacidad de reacción dan un grado en mayor o menor medida de protección solar.

La radiación solar esta dividida en tres regiones las cuales las más peligrosas las de onda corta son absorbidas por la capa de ozono, las otras dos que no lo son las que se enfoca este estudio determinado como es su interacción en medio de laboratorio.
9 BIBLIOGRAFIA.

47. Gianluca Barbon 2016 (Comunicaciones informáticas, Volúmenes 89-90, 1 de septiembre de 2016, Páginas 128-140).
