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Abstract 
Alzheimer’s disease is the most common form of dementia, representing 60–70% of dementia cases. The enzyme acetylcho-
linesterase (AChE) cleaves the ester bonds in acetylcholine and plays an important role in the termination of acetylcholine 
activity at cholinergic synapses in various regions of the nervous system. The inhibition of acetylcholinesterase is frequently 
used to treat Alzheimer’s disease. In this study, a merged BindingDB and ChEMBL dataset containing molecules with 
reported half-maximal inhibitory concentration (IC50) values for AChE (7032 molecules) was used to build machine learning 
classification models for selecting potential AChE inhibitors from the SistematX dataset (8593 secondary metabolites). A 
total of seven fivefold models with accuracy above 80% after cross-validation were obtained using three types of molecular 
descriptors (VolSurf, DRAGON 5.0, and bit-based fingerprints). A total of 521 secondary metabolites (6.1%) were classi-
fied as active in this stage. Subsequently, virtual screening was performed, and 25 secondary metabolites were identified as 
potential inhibitors of AChE. Separately, the crystal structure of AChE in complex with (–)-galantamine was used to perform 
molecular docking calculations with the entire SistematX dataset. Consensus analysis of both methodologies was performed. 
Only eight structures achieved combined probability values above 0.5. Finally, two sesquiterpene lactones, structures 15 
and 24, were predicted to be able to cross the blood–brain barrier, which was confirmed in the VolSurf+ quantitative model, 
revealing these two structures as the most promising secondary metabolites for AChE inhibition among the 8593 molecules 
tested.
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Graphic abstract
A consensus analysis of classification models and molecular docking calculations identified four potential inhibitorsof ace-
tylcholinesterase from the SistematX dataset (8593 structures).

Keywords  Natural products · Machine learning · Acetylcholinesterase · Ligand-based virtual screening · Machine learning · 
SistematX database

Introduction

Acetylcholinesterase (AChE, E.C. 3.1.1.7) is the enzyme 
responsible for the cleavage of ester bonds in acetylcholine 
and is one of the most active enzymes in the human body, 
associated with a turnover rate of 1.5 × 10 4 s−1 [1]. AChE 
plays an important role in the termination of the acetylcho-
line activity at the cholinergic synapses in various regions 
of the nervous system [2, 3]. This enzyme is a homomeric 
protein formed by three catalytic subunits and is typically 
bound to a collagen-like subunit in the neuromuscular junc-
tion [4, 5].

Acetylcholinesterase inhibition is frequently used as a 
therapeutic strategy for several diseases in humans, espe-
cially Alzheimer’s disease [6, 7], which is the most com-
mon neurodegenerative disease related to aging and results 
in the loss of mental acuity, functional declines, and disrupts 
learning abilities [8]. Among the most popular AChE inhibi-
tors, galantamine, donepezil, rivastigmine, and tacrine act 
as reversible inhibitors and are commonly used for thera-
peutic purposes [7, 9]. Irreversible AChE inhibitors, such 

as organophosphorus compounds, exert toxic effects on the 
organism[7, 10]. Approved drugs typically demonstrate 
good effectiveness for controlling disease symptoms, but 
some are not specific to AChE, exerting inhibitory effects 
against other cholinesterases. All currently approved AChE 
inhibitors are associated with secondary effects, including 
dizziness, anorexia, nausea, abdominal pain, and others [7].

To identify more specific and effective drugs against Alz-
heimer’s disease, great interest exists in the identification 
of chemotherapeutic molecules found in natural sources, 
such as plants and fungi [11]. These compounds exhibit 
great structural diversity and complexity, which is difficult 
to reproduce using conventional synthetic methods. The 
extended use of natural remedies in many traditional medici-
nal treatments among various populations demonstrates their 
acceptable effectiveness against a variety of diseases [12, 
13]. Huge quantities of information are available as a result 
of global research efforts to identify these metabolites, which 
have been stored and shared with the scientific community 
through multiple databases, including Dictionary of Natural 
Products, NUBBEdb, SuperNatural II, KNApSAcK Family, 
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Collection of Open Natural Products database (COCONUT), 
and others [14–17].

SistematX (http://​siste​matx.​ufpb.​br) is an emergent open-
access database for secondary metabolites, which can be 
used by any research group. SistematX was developed by 
the cheminformatics laboratory of the Federal University of 
Paraiba and contains a wealth of useful information regard-
ing secondary metabolites, highlighting the exact species 
and locations from which compounds were isolated [18]. 
Currently, SistematX contains approximately 9,000 unique 
secondary metabolites, including approximately 20,000 
unique botanical occurrences from five botanical families: 
Asteraceae, Apocynaceae, Annonaceae, Lamiaceae, and 
Solanaceae.

Databases have become key tools in chemoinformatic 
investigations and are indispensable for computer-aided 
drug design (CADD) studies. The biological activity infor-
mation available in these databases allows for the calcula-
tions of molecular descriptors of the identified metabolites, 
and many accessible CADD tools exist for designing various 
models to identify and predict biological activity and pro-
pose potential modifications of molecular motifs that could 
potentially increase biological activity. Quantitative struc-
ture–activity relationship (QSAR) and machine learning 
models associated with molecular docking methodologies 
are typically designed for these purposes [10, 19].

This study applied a combined approach in which 
machine learning classification models and molecular dock-
ing calculations were used to identify secondary metabolites 
from the SistematX dataset (8,593 structures) with potential 
inhibitory activity against AChE. Initially, machine learning 
classification models were built using three types of classifi-
catory algorithms and molecular descriptors obtained from a 
dataset consisting of 7,032 molecules with reported in vitro 
AChE inhibitory activity. In parallel, molecular docking 
calculations were performed using the crystal structure of 
recombinant human AChE in complex with (–)-galantamine 
(Protein Data Bank [PDB] ID: 4EY6). Finally, a consensus 
analysis of the two methodologies was performed, using the 
probability values calculated throughout the study to select 
those molecules with potential activity against AChE.

Material and method

Database

From the BindingDB [20] and ChEMBL databases 
(https://​www.​ebi.​ac.​uk/​chembl/), we selected a diverse 
set of structures that were initially classified according 
to their calculated activity against human AChE, includ-
ing 6766 structures from BindingDB and 7479 structures 
from ChEMBL 202. These compounds were classified 

according to their pIC50 values (–log[half-maximal inhibi-
tory concentration (IC50)] in mol/L); therefore, we strati-
fied these structures into active (pIC50 ≥ 6.0) and inactive 
(pIC50 < 6.0). The activity cutoff was selected based on the 
reported pIC50 value of galantamine (5.97 ± 0.03), which 
was used as a control in this study and represents one of 
the primary drugs used in the treatment of Alzheimer’s 
disease [21, 22]. Most reversible inhibitors used for thera-
peutic purposes exhibit either competitive or non-competi-
tive AChE inhibitory interactions. Due to the variability of 
experimental protocols used to obtain the data presented in 
both databases, a qualitative pattern was used to partially 
minimize the differences in activity values associated with 
different experimental protocols and strains [23]. The IC50 
values represent the concentration necessary to inhibit 
50% of AChE activity. Data curation was performed on 
the datasets according to the procedures suggested in the 
literature [24, 25]. Standardizer software [Jchem, version 
20.19.0.708 (2020), calculation module developed by Che-
mAxon, http://​www.​chema​xon.​com/] was used to canonize 
all simplified molecular-input line-entry system (SMILES) 
codes. After duplicate structures were removed, those with 
higher pIC50 values were eliminated. The use of only those 
compounds with lower activity values facilitated the gen-
eration of more restrictive models.

After dataset curation, the datasets were combined, 
resulting in a dataset containing 7,032 unique structures 
with reported AChE activity (3010 active and 4022 inac-
tive). For all structures, the SMILES codes were used as 
the input data in Marvin [ChemAxon, version 20.19.0.708 
(2020), calculation module developed by ChemAxon, 
http://​www.​chema​xon.​com/]. We used Standardizer soft-
ware [Jchem, version 20.19.0.708 (2020), calculation mod-
ule developed by ChemAxon, http://​www.​chema​xon.​com/] 
and ChemAxon to canonize the structures, add hydrogens, 
perform aromatic form conversions, and clean the molecu-
lar graphs in three dimensions. This software was used to 
generate and optimize conformers for the initial structure 
(represented by the root node in the tree). Those molecules 
that presented structural problems during the three-dimen-
sional (3D) structure generation were manually corrected 
using Marvin sketch [23].

The applicability domain (APD), based on Euclidean 
distances, was used to identify those compounds in the test 
set for which predictions may be unreliable. Compounds 
were considered unreliable if they had APD values higher 
than

d + Zσ, where d was the average Euclidian distance, and 
σ was the standard deviation of the set of samples in the 
training set with lower-than-average Euclidian distance val-
ues relative to all samples in the training set. The param-
eter Z is an empirical cutoff value, and 0.5 was used as the 
default value [26].

http://sistematx.ufpb.br
https://www.ebi.ac.uk/chembl/
http://www.chemaxon.com/
http://www.chemaxon.com/
http://www.chemaxon.com/
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SistematX secondary metabolites

The entire dataset of SistematX database [18] (8,653 second-
ary metabolites) was obtained in. comma-separated value 
(CSV) format. All SMILES codes were canonized using 
Standardizer software [Jchem, version 20.19.0.708 (2020), 
calculation module developed by ChemAxon, http://​www.​
chema​xon.​com/]. After duplicate structures were removed, 
8,593 unique structures were identified. ChemAxon Stand-
ardizer also was used to generate 3D structures using the fol-
lowing options: add hydrogens, perform aromatic form con-
versions, and clean molecular graphs in three dimensions.

Molecular descriptors

Volsurf+ descriptors

The 3D structures of the identified molecules, in special 
data file (SDF) format, were used as input data in VolSurf+ 
v. 1.0.7 and were subjected to molecular interaction fields 
(MIFs) to generate descriptors using the following probes: 
N1 (amide nitrogen–hydrogen-bond donor probe), O (car-
bonyl oxygen–hydrogen-bond acceptor probe), OH2 (water 
probe) and DRY (hydrophobic probe). Additional non-MIF-
derived descriptors were generated, resulting in a total of 
128 descriptors. One of the main advantages of using Vol-
Surf+ descriptors is the relatively low influence of confor-
mational sampling and averaging on these descriptors [27, 
28].

DRAGON descriptors

DRAGON 5.0 computer software [29, 30] was employed 
to calculate 1664 molecular descriptors. For all descrip-
tors, constant variables were excluded, and only those that 
presented different values were retained. For the remaining 
descriptors, pairwise correlation (r < 0.99) analysis was per-
formed to exclude those that were highly correlated. Thus, 
the number of DRAGON descriptors used in our calcula-
tions was reduced to 1437 [31].

RDK bit‑based fingerprints

Generates hashed bit-based fingerprints for an input of the 
3D structures of the identified molecules in SDF format. A 
total of 1,024 bit-based fingerprints were calculated using 
the circular fingerprint based on the Morgan algorithm 
and connectivity invariants (ECFP-like) in KNIME 4.3.2. 
through “RDK Fingerprint” and the “Expand bit vector” 
nodes [32].

Machine learning classification models

KNIME 4.3.2 software (KNIME 4.3.2 the Konstanz 
Information Miner Copyright, 2003–2014, www.​knime.​
org) was used to perform all analyses. Initially, molecular 
descriptors calculated in the VolSurf+, DRAGON, and 
bit-based fingerprint methods were imported, separately, 
in CSV format. The “Partitioning” node in the stratified 
sampling option was used to classify 90% of the initial 
dataset as the training set, and the remaining 10% was used 
as the test set. The “X-Partitioning” node in the stratified 
sampling option was used to divide the dataset five times 
into a modeling set (80%–20%), to perform a “fivefold 
cross-validation” procedure using WEKA nodes. The 
models were generated by employing three PMML algo-
rithms with the following specific parameters: a) Decision 
Tree Learner (Gini index, no pruning, number of threads: 
8, and minimal number of records per node: 2); b) Gradi-
ent Boosted Tree Learner (tree depth: 4, number of mod-
els: 100, and learning rate: 0.1); and c) Support Vector 
Machine, Polynomial (Gamma 1.0, Bias 1.0, Power 1.0, 
and overlapping penalty 1.0). From the confusion matrix, 
the internal and external performances of the selected 
models were analyzed, using the following parameters: 
sensitivity (true-positive rate), specificity (true-negative 
rate), and accuracy (overall predictability). Because an 
imbalanced dataset is generated, the Synthetic Minority 
Oversampling TEchnique (SMOTE) was used to perform 
the redistribution of the imbalanced dataset. SMOTE is 
a technique for generating new synthetic instances to re-
balance class distributions. SMOTE creates extra synthetic 
instances by pairing each positive instance with its nearest 
neighbor and generates new instances along a line segment 
between the pair of positive instances [33]. This procedure 
was performed using the five nearest neighbors and an 
oversample of two. In addition, to describe the true perfor-
mance of the model with more clarity than can be obtained 
from accuracy alone, the receiver operating characteristic 
(ROC) curve was employed, using a “ROC curve” node, 
which uses the sensitivity and specificity parameters. 
The plotted ROC curve shows the true-positive (active) 
rate versus the false-positive rate (1-specificity) [34]. In 
this representation, when a variable of interest cannot be 
distinguished between the two groups, the area under the 
ROC curve (AUC) value is 0.5, whereas a perfect separa-
tion between the values of the two groups, with no distri-
bution overlap, results in an AUC value of 1. Matthew’s 
correlation coefficient (MCC) was also calculated, for 
which a value of 1 represents a perfect prediction, a value 
of 0 represents a random prediction, and a value of −1 
represents total disagreement between the prediction and 
the observation [35].

http://www.chemaxon.com/
http://www.chemaxon.com/
http://www.knime.org
http://www.knime.org
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Molecular docking calculations

For molecular docking calculations, the structure of the 
recombinant human AChE (PDB ID: 4EY6) in complex 
with (–)-galantamine (PDB ID: GLN), a reversible, com-
petitive, tertiary alkaloid AChE inhibitor, was downloaded 
from PDB [3, 36]. This molecular docking protocol was 
designed to identify exclusive secondary metabolites that 
use the same inhibition mechanism that galantamine uses 
against AChE. Using Molegro 6.0.1 software, both rigid and 
flexible approaches were performed. All water compounds 
were deleted from the enzyme structure, and the enzyme/
compound structures were prepared using the same default 
parameter settings in the same software package (score func-
tion: MolDock Score; ligand evaluation: Internal ES, Inter-
nal HBond, Sp2–Sp2 Torsions, all checked; number of runs: 
10 runs; algorithm: MolDock SE; maximum interactions: 
1500; max. population size: 50; max. steps: 300; neighbor 
distance factor: 1.00; max. number of poses returned: 5). 
The rigid docking procedure was performed using a grid 
with an 18-Å radius, a 0.30-Å resolution, and a binding site 
center of X: −9.94, Y: −43.49, and Z: 30.29. For flexible 
molecular docking calculations, the residues within a dis-
tance of 5 Å from the AChE pocket were set as flexible, 
totaling 28 residues.

Drug‑like properties of the potential inhibitors 
against AChE

The absorption, distribution, metabolism, and excretion 
(ADME) parameters were calculated for all secondary 
metabolites classified as actives against AChE in the con-
sensus analysis using the SwissADME server [37], an open-
access web tool (http://​www.​swiss​adme.​ch). Drug toxicity 
predictions were performed in OSIRIS Data Warrior v.5.2.1, 
based on the following parameters: mutagenicity, tumori-
genicity, reproductive effects, and irritability [38]. The Vol-
Surf+ model for blood–brain barrier (BBB) permeation is 
a quantitative model containing approximately 500 related, 
but chemically diverse compounds that were extracted from 
the literature and an in-house database, which are defined 
as either brain-penetrating (Exp. LgBB > 0.5), have mod-
erate permeation (LgBB between 0 and 0.5), possess little 
ability to cross the BBB (Exp. LgBB greater than −0.3), or 
demonstrate very little permeation (LgBB less than −0.3) 
[27, 28, 39].

Results and discussion

Machine learning classification models were built based on 
structures with previously demonstrated inhibitory activity 
against human AChE that were registered in the ChEMBL 

database (https://​www.​ebi.​ac.​uk/​chembl/) and BindingDB. 
All procedures were performed in accordance with good 
practices established for QSAR studies, and the entire data-
set was curated using the procedures suggested in the litera-
ture [24, 25].

A total of 7032 unique structures were analyzed in this 
study following curation (AChE dataset). These structures 
were used to develop models using three types of molecular 
descriptors (Volsurf [27, 28], DRAGON 5.0 [29, 30] and 
Bit-based fingerprints) and three algorithms (Decision Tree 
Learner, Gradient Boosted Tree Learner, and Support Vector 
Machine) to identify additional human AChE inhibitors from 
the SistematX dataset containing 8,593 secondary metabo-
lites (SistematX dataset). SistematX is a web tool developed 
by the Laboratory of Cheminformatics of the Federal Uni-
versity of Paraiba that contains a wealth of useful informa-
tion for the scientific community regarding natural products, 
including the locations of those species from which various 
compounds were isolated [18].

Subsequently, for both the 7,032-structure AChE data-
set and the 8,594-structure SistematX secondary metabolite 
dataset, VolSurf+ [27, 28] , DRAGON 5.0 (1664) [29, 30] 
and bit-based fingerprint (1024) descriptors were calculated 
using KNIME 4.3.2. software (KNIME 4.3.2. the Konstanz 
Information Miner Copyright, 2003–2014, https://​www.​
knime.​org) [32]. The classification models were generated 
using three algorithms (Decision Tree Learner, Gradient 
Boosted Tree Learner, and Support Vector Machine) and 
validated through fivefold cross-validation to assess their 
abilities to determine activity probabilities for the entire Sis-
tematX dataset (Fig. 1).

Additionally, molecular docking calculations were per-
formed using the structure of recombinant human AChE 
(PDB ID: 4EY6) in complex with (–)-galantamine (PDB 
ID: GLN) [3] in Molegro virtual docker 6.0 software. A 
consensus analysis was performed to obtain probability val-
ues for each structure in the SistematX dataset, based on 
the docking results obtained from the classification models, 
to identify potentially reversible AChE inhibitors. In addi-
tion, a docking validation was performed using the AChE 
dataset (both active and inactive structures), using docking 
calculations for each of the identified 7032 structures. A 
ROC curve was built to redistribute the imbalanced dataset 
using SMOTE [33].

Machine learning classification models

Initially, three types of molecular descriptors were calcu-
lated for the entire 7,032-molecule AChE dataset: VolSurf+ 
descriptors (128 values), DRAGON 5.0 descriptors (1,664 
values), and bit-based fingerprint descriptors (1,024). The 
descriptors were classified using a binary classification sys-
tem (as active or inactive). Those molecules with pIC50 ≥ 

http://www.swissadme.ch
https://www.ebi.ac.uk/chembl/
https://www.knime.org
https://www.knime.org
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6.0 (1 µM or 1 × 10−6 M) were classified as active, based on 
the reported pIC50 value of galantamine (5.97 ± 0.03), which 
is one of the primary AChE inhibitors approved for Alzhei-
mer’s disease treatment and served as the positive control 
for this study [21, 22]..

The three types of molecular descriptors were input into 
the KNIME program in CSV format, resulting in the gen-
eration of seven classification models [32] employing three 
algorithms (Decision Tree Learner, Gradient Boosted Tree 
Learner, and Support Vector Machine). Several models were 
evaluated to minimize the false-positive rates of the models. 
For each algorithm, the following parameters were selected: 
a) Decision Tree Learner (Gini index, no pruning, number 
of threads: 8, and minimal number of records per node: 2); 
b) Gradient Boosted Tree Learner (tree depth: 4, number of 
models: 100, and learning rate: 0.1); and c) Support Vector 
Machine, Polynomial (Gamma 1.0, Bias 1.0, Power 1.0, and 
overlapping penalty 1.0).

Structures with pIC50 values between 5.8 and 6.0 (range 
of 0.2 units) were excluded to avoid edge effects and 
improve the predictive capacity of the models by minimizing 

potential activity differences due to errors and the use of dif-
ferent experimental protocols [23]. The performances of the 
classification models were verified through fivefold cross-
validation, splitting the dataset five times into a modeling set 
(80%–20%), which is one of the most common and accurate 
procedures used to evaluate these types of algorithms [25, 
40].

For the fivefold cross-validation and external test 
set, values between 78.5 and 87.7% were obtained. Due 
to the characteristics of the dataset, for all models, the 
true-negative rates, indicating the identification of inac-
tive molecules (ranging from 78.5 to 91.0%), were greater 
than the true-positive rates, indicating the identification 
of active molecules (from 75.7 to 87.7%). These outcomes 
demonstrated that the generated classification models were 
highly restrictive, minimizing the probability of obtain-
ing false-positive structures and preventing inactive mol-
ecules from being predicted to be active. Additionally, the 
models that were built with the Decision Tree Learner 
algorithm returned lower positive, negative, and overall 
rates (Table 1). Two additional models were built using 

Fig 1   The virtual screening methodology used in this study. Solid 
blue lines represent the AChE dataset used to generate and vali-
date the machine learning classification models using three types of 
descriptors: VolSurf+, DRAGON 5.0, and bit-based fingerprints. The 
red lines represent the procedures used to evaluate 8,593 secondary 
metabolites obtained from SistematX. The black line represents both 

datasets (AChE and SistematX). The green line represents the recom-
binant human AChE (PDB ID: 4EY6) in complex with (–)—galan-
tamine (PDB ID: GLN), which was extracted from the Research Col-
laboratory for Structural Bioinformatics (RCSB) Protein Data Bank 
(PDB). The yellow dash-dot border delimits the process performed in 
KNIME software
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a combination of VolSurf+ and DRAGON 5.0 molecular 
descriptors using the Decision Tree Learner and Gradient 
Boosted Tree Learner algorithms, which returned simi-
lar rates as those models that were built using molecular 
descriptors in isolation (Supplementary Material).

From the confusion matrix, two quality parameters 
were calculated: AUC and MCC. Because an imbalanced 
dataset was generated using chosen cutoff value (pIC50 ≥ 
6.0), the SMOTE technique was applied to redistribute the 
imbalanced dataset. SMOTE is a technique for generating 
new synthetic instances of an outcome to re-balance class 
distributions. SMOTE creates extra synthetic instances 
by pairing each positive instance with its nearest neigh-
bor, then generating new instances s along a line segment 
between the pair of positive instances [33].

The ROC curve is a quality parameter that plots the 
true-positive rate (sensitivity, Eq. 1) against the false-posi-
tive rate (1− specificity, Eq. 2), and the values for the AUC 
can range between 0 and 1, with a value of 1 indicating a 
perfect separation between the two groups) [34].

For all classification models obtained, AUC values 
greater than 0.80 were achieved, demonstrating a high 
rate of sensitivity and a low false-positive rate, and the 
classification models built with the Gradient Boosted Tree 
Learner algorithm resulted in a higher degree of differen-
tiation compared with the other types of models, present-
ing AUC values above of 0.90 (Fig. 2).

The other quality parameter calculated was the MCC, 
which was determined from all of the values obtained from 
the confusion matrix, as shown in Eq.

(1)Sensitivity =
TP

TP + FN

(2)Specificity =
TP

TP + FN

where TP is the true-positive rate, TN is the true-negative 
rate, FP is the false-positive rate, and FN is the false-nega-
tive rate. An MCC value equal to 1 indicates a perfect cor-
relation, a value of 0 indicates a random prediction, and a 
value of −1 indicates total disagreement between the predic-
tion and the observation [35].

MCC values from 0.57 to 0.75 and between 0.54 and 
0.75 were observed for the fivefold cross-validation and 
external test sets, respectively. Additionally, in those mod-
els built using DRAGON 5.0 and VolSurf+ molecular 
descriptors, the MCC values were lower for models built 
using the Decision Tree Learner algorithm compared with 
the values for the models built with the Gradient Boosted 
Tree Learner algorithm, which indicated that the Gradient 
Boosted Tree Learner models had a lower false-positive 
rate (below 15.9%), as indicated by the AUC results, but 
also had a higher hit rate for inactive compounds. For bit-
based fingerprint descriptors, the models built with the 
Decision Tree Learner algorithm exhibited similar MCC 
values for the fivefold cross-validation and external test 
sets (0.72 and 0.72, respectively) compared with the mod-
els built using the Gradient Boosted Tree Learner (0.71 
and 0.71, respectively) and Support Vector Machine (0.71 
and 0.73, respectively) algorithms. Similarly, higher MCC 
values were observed for the models built with bit-based 
fingerprints, which were associated with MCC values 
above 0.70, except for the model that used the Gradient 
Boosted Tree Learner algorithm and DRAGON 5.0 molec-
ular descriptors, which showed MCC values of 0.75 for 
both the fivefold cross-validation and external test sets. 
All analyses were performed after the redistribution of the 
imbalanced dataset using SMOTE.

(3)MCC =
(TP ⋅ TN) − (FP ⋅ FN)

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Table 1   Summary of the 
fivefold cross-validation, 
which was obtained using three 
algorithms and three types 
of molecular descriptors on a 
total set of 7032 compounds, 
with inhibitory in vitro activity 
against AChE

DTL = Decision Tree Learner, GBT = Gradient Boosted Tree Learner, and SVM = Support Vector 
Machine

Fivefold Cross-validation External test set

Algorithm Active Inactive Overall Active Inactive Overall

Volsurf+ DTL 76.2 80.4 78.5 75.7 78.5 77.3
GBT 79.4 84.1 82.0 77.4 85.1 81.7

Bit-based Fingerprint DTL 85.2 86.9 86.2 87.7 84.8 86.1
GBT 79.4 90.5 85.6 79.4 91.0 85.8
SVM 84.6 86.6 85.7 86.4 86.7 86.6

DRAGON 5.0 DTL 81.5 84.4 83.1 83.4 86.2 84.9
GBT 85.1 89.8 87.7 84.1 90.2 87.4
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To identify any compounds in the test sets and the Sis-
tematX dataset for which the predictions may be unre-
liable, the APD was calculated. In the seven generated 
classification models, less than 0.7% of the test set was 
classified as unreliable. Similarly, for the SistematX 

dataset used for the ligand-based virtual screening, more 
than 97.7% of the secondary metabolites were classified 
as reliable.

Fig 2   ROC plots, sensitivity versus [1—specificity], generated for 
machine learning classification models (fivefold cross-validation) that 
were built using three different types of molecular descriptors. The 
ROC curves were built after the data set imbalance was redistributed 

using SMOTE. a, c, and d DTL, Decision Tree Learner algorithm; b, 
d, and f GBT, Gradient Boosted Tree Learner algorithm; and g SVM, 
Support Vector Machine algorithm; AUC = value of the area under 
the curve; MCC = Matthews’s correlation coefficient
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Ligand‑based virtual screening of SistematX 
database

All of the generated machine learning classification mod-
els were used to analyze the 8,953 secondary metabolites 
registered in SistematX to predict those that may poten-
tially have inhibitory activity against human AChE, the 
inhibition of which is considered to be a promising strat-
egy for the treatment of neurological disorders, such as 
Alzheimer’s disease, senile dementia, ataxia, and myas-
thenia gravis [41].

The probability of each secondary metabolite to be clas-
sified as active, p(A), was calculated through a consensus 
analysis of all probability values obtained from the fivefold 
classification models, according to Eq. 4:

where p(A) is the combined probability of all machine learn-
ing classification models; pi is the probability value calcu-
lated in the machine learning classification model (i); TN 
is the true-negative rate (Specificity, Eq. 2) in the machine 
learning classification model (i), and i ranges from 1 to 8593 
(SistematX dataset).

A consensus analysis was selected because one of the 
main objectives of this study was to select various types 
of molecular descriptors that reflect the different aspects of 
the molecular structure to minimize the false-positive rate. 
According to Gramatica et al., selecting the best performing 
models may overemphasize some aspects of the molecular 
structure and underestimate others or result in the complete 
bypassing of many important features. The consensus analy-
sis provided better prediction outcomes than the majority 
of the individual models and might consider more peculiar 
aspects of certain structures [42].

After this calculation, only 25 of the 8,593 secondary 
metabolites registered in the SistematX webtool achieved 
p(A) values equal to or greater than 0.5. Four types of sec-
ondary metabolites were observed among the structures 
classified as active (16 flavonoids, 4 sesquiterpene lactones, 
4 diterpenes, and 1 monoterpene), which have been identi-
fied in species from three botanical families: Asteraceae, 
Annonaceae, and Apocynaceae (Fig 3 and Table 2).

Structural features were identified, such as the presence 
of glycosides containing a disaccharide at the C3 position 
of the hydroxyl group on carbon-3 in the flavonols 1 and 2, 
which are two secondary metabolites that were extracted 
from Asteraceae and are highly distributed throughout the 
American continent, such as Carthamus and Brickellia [43, 
44]. However, after applying the PAINS remover web tool to 
examine the results for false-positive molecules, 9 of the 25 
structures classified as active against AChE were classified 

(4)p(A) =

∑

i=1

�

pi ⋅ TNi

�

∑

i=1 TNi

as false positives due to the presence of the catechol moiety 
in their structures [45].

Similarly, the moiety α-methylene-γ-lactone was 
observed in three of the four sesquiterpene lactones classi-
fied as active compounds (structures 6, 19, and 24). Previ-
ously, the presence of this group has been associated with 
antiparasitic activity in this type of metabolite, due to the 
interaction between this group and the sulfhydryl group of 
cysteine, through a Michael addition [46]. Similarly, a heli-
angolide skeleton was present in two sesquiterpene lactones 
(structures 6 and 24). These two secondary metabolites were 
identified in species belonging to the subtribe Liatrinae of 
the Asteraceae family [47].

Molecular docking calculations

In addition, molecular docking calculations were performed 
to establish a consensus, with results obtained from machine 
learning classification models. The crystal structure of 
recombinant human AChE (PDB ID: 4EY6) in complex with 
(–)-galantamine (PDB ID: GLN), which is a reversible, com-
petitive, tertiary alkaloid AChE inhibitor, was obtained from 
the PDB databank [3, 36]. The molecular docking protocol 
was designed to identify exclusive secondary metabolites 
that utilize the same inhibition mechanism against AChE as 
galantamine. The methodology was validated by perform-
ing redocking with the ligand reported in the PDB crystal 
structure.

Using the same parameters, virtual screening of the 8,593 
structures found in the SistematX dataset was performed. 
Based on the binding energy values, all tested molecules 
were ranked using the following probability calculation 
(Eq. 5) [48]:

where p(D) = molecular docking probability; Ei = docking 
energy of compound i, for which i ranges from 1 to 8593 
(SistematX dataset); Emin = the lowest energy value of the 
dataset; Egalantamine = the galantamine energy from the pro-
tein crystallography redocking attempt.

The number of secondary metabolites with p(D) values 
greater than 0.5 and binding energy values less than the 
binding energy of galantamine (−129.5 kJ/mol) was 2244 
(26.1%). The root-mean-square deviation (RMSD) for gal-
antamine was 0.0656. Of the 16 secondary metabolites from 
the SistematX dataset identified as potential AChE inhibitors 
by the machine learning models, only 8 structures presented 
p(D) values greater than 0.5, and structure 11, a flavonol 
derived from Asteraceae, was the top-ranked structure, with 
a p(D) value of 0.77 and a docking score of −172.9 kJ/mol.

(5)p(D) =
Ei

Emin

if Ei < Egalantamine
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Analyzing the docking poses, galantamine showed 20 
interactions with amino acids within the AChE active site. 
Only one hydrogen bond (H-bond) was formed between 
the oxygen present in the aromatic ring of galantamine and 
S203. The interactions between the structures 3, 11, 15, and 
24 and AChE were analyzed and compared against the inter-
action observed between galantamine and AChE. More than 
65% of the galantamine-interacting residues identified in 
AChE (15) also interacted with four secondary metabolites; 

however, the interaction with the residue W236 was only 
observed for galantamine. All interactions between AChE 
and galantamine and the four selected secondary metabolites 
are shown in Fig. 4.

The selected secondary metabolites showed a higher 
number of H-bonds compared with those observed for gal-
antamine, and structure 3 (chalcone) presented the highest 
number of H-bond interactions with W86, G120, G121, 
G122, and S203. Additionally, for both evaluated flavonoids, 

Fig 3.   Secondary metabolites from SistematX were classified as potential inhibitors of AChE by the developed machine learning classification 
models
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structures 3 (chalcone) and 8 (flavonol), two π–π interactions 
were observed between the aromatic rings of these mole-
cules and the tyrosine residues (Y124 and Y337) of AChE. 
In structure 11, a higher number of carbon–H-bond interac-
tions was observed, with fewer carbon–H-bond interactions 
observed for structures 3 and 15, and no instances of this 
interaction type observed in structure 6 or with galantamine.

The residue S203 also interacts with the selected struc-
tures, and an H-bond was formed with structures 3 (chal-
cone), 15, and 24 (two sesquiterpene lactones). Structure 11 
established a van der Waals interaction with S203. Similarly, 
all structures interacted with G122 through an H-bond for 
structures 3, 11, and 15 (Fig. 4), whereas galantamine and 
structure 24 interacted with this residue through van der 
Waals interactions. Both sesquiterpene lactones (structures 
15 and 24) interacted through the carbonyl group present in 
the lactone ring, establishing H-bond interactions with G122 
and Y337, respectively.

Flexible molecular docking calculations were also per-
formed for the best-ranked molecules to analyze the behav-
iors of these molecules at the active site of the target in more 
detail by mimicking the natural biological environment. 
Docking results should be viewed in a theoretical context 
because they are not supported by experimental evidence 

[49]. Table 3 shows the most important residues involved 
in the interactions with the studied target, emphasizing the 
interactions with those residues that appeared to be critical 
for binding with AChE in the structure-based virtual screen-
ing analysis.

The eight selected secondary metabolites established 
favorable interactions with residues W86, G122, and E202, 
and W86 showed the strongest binding energy values (from 
−36.2 to −5.0 kJ/mol). The flavonols 11 and 12 exhibited 
similar docking values for the evaluated residues, differing 
only in the contributions to interactions with residues D74 
and Y341. For the sesquiterpene lactones, different behav-
iors were identified. Structure 24 interacts more favorably 
with key residues in the pocket of AChE, whereas guaia-
nolide (structure 15) was not observed to interact with D74 
and Y341 and featured an unfavorable interaction with S203 
(17.6 kJ/mol).

Consensus analysis of machine learning 
classification models and molecular docking 
calculations

Consensus analysis of the two methodologies used in 
this study (machine learning and molecular docking) was 

Table 2   Botanical data 
and p(A) values for the ten 
molecules classified as active 
molecules, identified by 
virtual screening. Secondary 
metabolites highlighted in bold 
were classified as false-positive 
structures by the PAINS 
remover [45]

ID Class Skeleton Family Species p(A)

1 Flavonoid Flavonol Asteraceae Brickellia arguta 0.61
2 Flavonoid Flavonol Asteraceae Carthamus tinctorius 0.60
3 Flavonoid Chalcone Asteraceae Blumea balsamifera 0.59
4 Flavonoid Flavonol Asteraceae Achillea biebersteinii 0.59
5 Flavonoid Flavone Asteraceae Conyza bonariensis 0.58
6 Sesquiterpene lactone Heliangolide Asteraceae Hartwrightia floridana 0.57
7 Flavonoid Flavonol Asteraceae Eupatorium glandulosum 0.57
8 Diterpene Andrographolide-type Lamiaceae Andrographis paniculata 0.57
9 Flavonoid Flavonol Asteraceae Tagetes dianthioflora 0.57
10 Flavonoid Flavonol Asteraceae Eupatorium semiserratum 0.56
11 Flavonoid Flavonol Asteraceae Tagetes mandonii 0.56
12 Flavonoid Flavonol Asteraceae Tagetes dianthioflora 0.56
13 Flavonoid Flavonol Asteraceae Tagetes minuta 0.56
14 Monoterpene Pinane Annonaceae Annona reticulata 0.56
15 Sesquiterpene lactone Humulene Asteraceae Asteriscus graveolens 0.55
16 Flavonoid Flavonol Asteraceae Tagetes minuta 0.55
17 Flavonoid Flavonol Asteraceae Brickellia dentata 0.55
18 Flavonoid Flavonol Asteraceae Eupatorium adenophorum 0.54
19 Sesquiterpene lactone Guaianolide Asteraceae Anthemis cretica 0.54
20 Diterpene – Lamiaceae Vitex negundo 0.54
21 Diterpene – Lamiaceae Coleus somaliensis 0.54
22 Flavonoid Flavonol Asteraceae Tagetes mandonii 0.54
23 Bisnorditerpene - Annonaceae Polyalthia viridis 0.54
24 Sesquiterpene lactone Heliangolide Asteraceae Liatris punctata 0.53
25 Flavonoid Flavonol Asteraceae Tagetes dianthioflora 0.52
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performed to verify potentially active secondary metabolites 
with AChE inhibitory activity and explore their inhibitory 
mechanisms. A new probability score, p(AChE), was deter-
mined, combining the probability scores of p(A) and p(D) 
(Eq. 6). An additional validation procedure for molecular 
docking calculations was performed using the entire AChE 

dataset (7,032 structures) in an attempt to minimize the 
probability of selecting false-positive compounds..

where p(AChE) = combined probability; p(D) = molecu-
lar docking probability; p(A) = probability obtained from 

(6)p(AChE) =
p(D) ⋅

(

TNdocking

)

+ p(A)

1 + TNdocking

Fig 4   a Docking conformation of galantamine in the active site of 
human AChE (Green); 2D-residual interaction diagrams of b galan-
tamine, c Structure 3, d Structure 11, e Structure 15, and f Structure 
24. The interacting residues are shown as colored circles, and interac-

tions are indicated as colored dashed lines: H-bond (lime), van der 
Waals (green), π–π (purple) and π–alkyl (pink), unfavorable (red) and 
carbon–H-bond (teal)
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machine learning classification models; TNDocking = the true-
negative rate (specificity, Eq. 2) obtained from the validation 
of the molecular docking calculations.

To calculate the true-negative rate from the docking 
calculations, the docking scores for all structures were cal-
culated, and their p(D) values were determined according 
to Eq. 5 (molecular docking probabilities). The structures 
were then classified as either active or inactive to obtain two 
proportional structure groups. The cutoff selected for this 
procedure was the docking score for galantamine (−129.5 
kJ/mol) + 15 kJ/mol. As a result, 3454 (49.1%) molecules 
were classified as active, and 3578 (50.9%) molecules were 
classified as inactive. Using the p(D) values and the true-
positive rate, the confusion matrix and its respective ROC 
curve were determined (Fig. 5.).

The true-negative rate (specificity, Eq. 2), which was 
obtained from the validation of the molecular docking calcu-
lation, is related to Eq. 6, similar to the relationship observed 
with Eq.  4 (ligand-based probabilities) for the fivefold 
cross-validation machine learning models. The goal of this 

analysis was to minimize the probability of selecting inactive 
molecules as active molecules (false-positive) because the 
selection of false-positive molecules can result in significant 
wastes of both time and money [23, 48].

Table 4 summarizes the results for the best-ranked sec-
ondary metabolites according to the consensus analysis. 
Only eight structures were identified as potential AChE 
inhibitors from among the 8,593 secondary metabolites reg-
istered in SistematX, which was used as the starting point for 
this study. Four sesquiterpene lactones and four flavonoids 
from Asteraceae were the unique molecules that achieved 
p(A), p(D), and p(AChE) values above 0.5.

Drug‑like properties of the potential inhibitors 
against AChE

To be effective as therapeutic agents against AChE, centrally 
acting drugs must be able to cross the BBB. SwissADME 
[37], was used to evaluate the qualitative capacity of each 
potential inhibitor to cross the BBBs. The obtained results 
were evaluated in a quantitative model using VolSurf+, con-
taining approximately 500 related but chemically diverse 
compounds extracted from the literature and our in-house 
data set that are known to be brain-penetrating [27, 28, 39]

Table 3   Interaction values 
(kJ/mol) for eight selected 
secondary metabolites identified 
in the SistematX dataset 
(classified as active in the 
machine learning classification 
models and by the molecular 
docking calculations) and 
selected AChE residues

Structure D74 E202 G120 G121 G122 S203 W86 Y124 Y337 Y341

2 −8.5 −9.4 −1.5 −4.1 −3.1 19.5 −5.0 42.9 −23.8 −21.9
3 −7.3 −7.5 −6.2 −3.2 −6.1 29.4 −30.8 14.8 13.2 −5.2
6 −6.0 −5.4 3.4 4.8 −2.1 10.5 −15.6 14.6 9.9 −8.2
11 −4.7 −7.1 3.5 −7.1 −2.4 −2.8 −19.4 −5.5 −21.3 9.8
12 9.2 −4.8 −1.6 −6.3 −0.9 −4.1 −19.4 −5.0 −21.3 −1.4
15 − −7.6 −3.9 −12.4 −6.9 17.6 −11.7 −6.0 −7.6 −
19 −3.6 −8.1 9.7 0.8 −3.5 2.7 −36.2 5.0 18.7 −5.8
24 −4.7 −7.1 3.5 −7.1 −2.4 −2.8 −19.4 −5.5 −21.3 9.8
GLN −1.9 −8.0 −4.6 −14.9 −6.4 −7.9 −25.4 −6.9 −12.1 −1.4

Fig 5   Validation of the molecular docking calculations using an ROC 
curve depicting sensitivity versus (1—specificity). AUC: area under 
the curve

Table 4   Secondary metabolites identified as potential inhibitors of 
AChE through a consensus analysis of machine learning classification 
models and molecular docking calculations

Structure p(A) p(D) p(AChE)

11 0.56 0.77 0.64
2 0.60 0.69 0.63
3 0.59 0.70 0.63
12 0.56 0.70 0.61
6 0.57 0.65 0.60
19 0.54 0.67 0.59
24 0.53 0.61 0.56
15 0.55 0.58 0.56
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In the qualitative prediction, structures 15 and 24 were 
identified as having the potential to cross the BBB, indicat-
ing the potential for neuroprotective effects. This result was 
confirmed for structure 24 in the VolSurf + model, with an 
LgBB score of 0.02, which is classified as a compound with 
moderate BBB permeation. Structure 15 (−0.22) possessed 
a minimal ability to cross the BBB (Table 5).

Lipinski’s "rule of five" and the Veber rules were evalu-
ated for the four sesquiterpene lactones obtained from Aster-
aceae (structures 6, 15, 19, and 24), and no violations were 
identified, which suggested that these secondary metabo-
lites are likely orally bioavailable and demonstrated high 
gastrointestinal absorption. Moreover, both of the identified 
flavonol glycosides (structures 2 and 11) showed multiple 
violations of the Lipinski and Veber rules [37].

Finally, mutagenicity, tumorigenesis, negative effects on 
the reproductive system, and irritability were evaluated for 
these four compounds also were determined using OSIRIS 
Data Warrior v.5.2.1[38] . Only the sesquiterpenes lactones 
(structures 6, 19, and 24) showed negative effects, which 
were predicted to cause high irritability (Table 5). Overall, 
the results showed that structures 15 and 24 were highly 
likely to be easily absorbed and distributed, with low levels 
of toxicity. However, irritability was predicted for structure 
24.

Conclusions

This study combined machine learning classification models 
with molecular docking calculations to assess 8593 second-
ary metabolites from the SistematX database as potential 
AChE inhibitors. For the construction of the classificatory 

models, we utilized a dataset of 7032 structures regis-
tered in BindingDB and ChEMBL that have previously 
reported in vitro inhibitory activities against AChE. The 
models obtained achieved an accuracy above 78.5% and 
were highly restrictive. Only 25 molecules were classified 
as being potentially active. Some shared structural features 
were observed among these molecules (nine flavonoids were 
identified as false positives by the PAINS server). Molecu-
lar docking allows the predicted interactions to be observed 
between the secondary metabolites and the active site of 
AChE.

Combining the probability values obtained for each stage, 
a consensus analysis was performed, and eight structures 
(four flavonoids and four sesquiterpene lactone) were iden-
tified as potential inhibitors of AChE that utilize the same 
mechanism of action as galantamine. Finally, through the 
prediction of ADME, toxicity, and pharmacokinetic proper-
ties of the four potentially active molecules against diverse 
diseases, structures 15 and 24 emerged as the most promis-
sory secondary metabolites against AChE among all 8593 
molecules tested.

These methodologies that integrate multiple virtual 
screening approaches represent interesting alternatives for 
use as the starting point during drug development, allowing 
for the identification of potentially actives molecules against 
diverse diseases. In addition, the use of other computational 
tools, such as molecular docking calculations and ADMET 
predictions, allows for the establishment of a predicted 
mechanism of action for the selected structures, reducing 
costs and saving time and money.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11030-​021-​10245-z.

Table 5   Drug-like properties of secondary metabolites identified as potential AChE inhibitors

p(D) = molecular docking probability; p(A) = probability obtained from machine learning classification models; p(AChE) = combined probabil-
ity value
a SwissADME
b Volsurf+
c Osiris Data Warrior v.5.2.1

ID Molecular weighta BBB permeanta LgBBb GI absorptiona Mutagenicc Tumorigenicc Reproduc-
tive Effec-
tive c

Irritantc Lipinski 
violationa

Veber 
viola-
tion a

2 592.55 No −4.83 Low None None None None 3 1
3 420.41 No −2.14 Low None None None None 1 1
6 360.4 No −0.41 High None None None High 0 0
11 508.43 No −2.86 Low None None None None 3 1
12 318.24 No −3.23 Low None None None None 1 1
15 264.32 Yes −0.22 High None None None None 0 0
19 380.39 No −1.24 High None None None High 0 0
24 344.4 Yes 0.02 High None None None High 0 0

https://doi.org/10.1007/s11030-021-10245-z
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